Nonlinear optics for quantum technologies
Summary
This course provides the fundamental knowledge and theoretical tools needed to deal with nonlinear optical interactions, covering both classical and quantum theory of nonlinear optics.
Content
Nonlinear optics is used for the generation and conversion of quantum states of light, with numerous applications in quantum technologies. In parallel, the development of photonic integrated circuits and micro/nano-cavities offers new opportunities to boost and tailor nonlinear effects. Finally, nonlinear spectroscopy on molecules and nanomaterials is a power ful tool to probe their electronic and vibrational properties. This course covers the fundamental knowledge needed to understand these contemporary developments.
Fundamentals of nonlinear optics
- Reminders: wave propagation in a linear medium with dispersion
- Wave propagation in a nonlinear medium and phase matching conditions
- The nonlinear susceptibility tensor and crystal symmetries
- Generation of coherent states at new frequencies (second harmonic, sum- and difference frequency, etc.)
Quantum theory of nonlinear optics and its applications
- Quantum theory of the nonlinear susceptibility (first quantisation, semi-classical treatment). Particular case of the two-level system.
- Quantization of the electromagnetic field
- Effective Hamiltonian of nonlinear interactions
- Generation of nonclassical states of light: the case of parametric down conversion
- The joint spectral amplitude and the two-mode squeezed state
- Integrated nonlinear optics in waveguides and cavities
- Application to quantum frequency conversion, quantum networks, etc.
Invited seminars and tutorials from researchers active in some of these fields (quantum frequency conversion, integrated quantum optics, etc.) will enrich the course with practical examples from contemporary research.
Keywords
Nonlinear optics, quantum optics, photonics, quantum technologies, integrated optics, optical spectroscopy
Learning Prerequisites
Required courses
Classical electrodynamics (or any equivalent introduction to optical waves in a medium)
Quantum mechanics (perturbation theory and the harmonic oscillator)
Learning Outcomes
By the end of the course, the student must be able to:
- Formulate quantum models of nonlinear optical interactions
- Compute wave propagation in linear and nonlinear media, in waveguides and low-dimensional geometries
- Describe applications of nonlinear optics in classical and quantum technologies
- Predict the quantum state of light generated by a specific nonlinear process
Assessment methods
Final written exam.
Supervision
Office hours | Yes |
Assistants | Yes |
Forum | Yes |
Resources
Virtual desktop infrastructure (VDI)
No
Ressources en bibliothèque
Notes/Handbook
Hand-written notes recorded on the tablet + slides.
Moodle Link
Dans les plans d'études
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Nonlinear optics for quantum technologies
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Nonlinear optics for quantum technologies
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Nonlinear optics for quantum technologies
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Nonlinear optics for quantum technologies
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Nonlinear optics for quantum technologies
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Nonlinear optics for quantum technologies
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Nonlinear optics for quantum technologies
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Nonlinear optics for quantum technologies
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Nonlinear optics for quantum technologies
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Nonlinear optics for quantum technologies
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Nonlinear optics for quantum technologies
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
Semaine de référence
Lu | Ma | Me | Je | Ve | |
8-9 | |||||
9-10 | |||||
10-11 | |||||
11-12 | |||||
12-13 | |||||
13-14 | |||||
14-15 | |||||
15-16 | |||||
16-17 | |||||
17-18 | |||||
18-19 | |||||
19-20 | |||||
20-21 | |||||
21-22 |
Légendes:
Cours
Exercice, TP
Projet, Labo, autre