Deep learning in biomedicine
CS-502 / 6 crédits
Enseignant:
Langue: Anglais
Remark: Pas donné en 2024-25
Summary
Deep learning offers potential to transform biomedical research. In this course, we will cover recent deep learning methods and learn how to apply these methods to problems in biomedical domain.
Content
The goal of this course is to cover recent deep learning methods and demonstrate how they can be applied to biomedical data. The course will cover ongoing advances in deep learning research for different input data types (e.g., convolutional neural networks for images, graph convolutional neural networks for graph structured data, transformers for sequence data). We will start with a standard supervised learning setting and then cover the ongoing developments in methodologies that allow us to learn using scarcely labeled datasets by transferring knowledge across tasks (e.g., transfer learning, meta-learning). These settings have particular importance in the biomedical domain in which it is often very difficult to obtain labeled datasets. Recent papers from the literature that apply these methods to problems in biomedicine will be presented and discussed.
In assignments, students will work with popular deep learning software frameworks. They will be evaluated on their ability to understand and implement the methods learned in a class. In the project, students will choose a real-world problem in the biomedical domain and develop a solution for the problem of their choice. They will be evaluated on the ability to propose and develop a suitable model to solve the task, propose suitable evaluation, provide analysis and extract insights from the developed models, write a project report and present project results.
This course is of interest to MS/PhD students interested in recent deep learning methods and their applications to real-world problems in the biomedical domain.
Learning Prerequisites
Required courses
CS-433 Machine learning
Recommended courses
CS-233 Introduction to machine learning
Important concepts to start the course
- Python programming
- Probability and statistics
- Linear Algebra
- Machine learning
Learning Outcomes
By the end of the course, the student must be able to:
- Understand and implement deep learning methods covered in the course
- Understand benefits and shortcomings of the methods covered in the course
- Understand common problems in the biomedical domain and know which methods are suitable for solving these problems
- Review academic research papers and understand their contributions according to concepts covered in the course
- Complete a project that applies learned algorithms to a real-world problem in the biomedical domain
Teaching methods
- Lectures
- Paper reading
- Course project
Expected student activities
- Attend lectures and participate in class
- Complete homework assignments
- Complete a deep learning project in a group. This includes preparing a project proposal, implementing the method, submitting final project report and presenting project results
Assessment methods
- Assignments during the semester (50%)
- Project (50%)
Supervision
Office hours | Yes |
Assistants | Yes |
Forum | Yes |
Resources
Bibliography
Goodfello, Bengio, Courville. Deep Learning. MIT Press (2016)
Ressources en bibliothèque
Moodle Link
Dans les plans d'études
- Semestre: Printemps
- Forme de l'examen: Pendant le semestre (session d'été)
- Matière examinée: Deep learning in biomedicine
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Projet: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Pendant le semestre (session d'été)
- Matière examinée: Deep learning in biomedicine
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Projet: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Pendant le semestre (session d'été)
- Matière examinée: Deep learning in biomedicine
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Projet: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Pendant le semestre (session d'été)
- Matière examinée: Deep learning in biomedicine
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Projet: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Pendant le semestre (session d'été)
- Matière examinée: Deep learning in biomedicine
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Projet: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Pendant le semestre (session d'été)
- Matière examinée: Deep learning in biomedicine
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Projet: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Pendant le semestre (session d'été)
- Matière examinée: Deep learning in biomedicine
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Projet: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Pendant le semestre (session d'été)
- Matière examinée: Deep learning in biomedicine
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Projet: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Pendant le semestre (session d'été)
- Matière examinée: Deep learning in biomedicine
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Projet: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Pendant le semestre (session d'été)
- Matière examinée: Deep learning in biomedicine
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Projet: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Pendant le semestre (session d'été)
- Matière examinée: Deep learning in biomedicine
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Projet: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Pendant le semestre (session d'été)
- Matière examinée: Deep learning in biomedicine
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Projet: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Pendant le semestre (session d'été)
- Matière examinée: Deep learning in biomedicine
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Projet: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Pendant le semestre (session d'été)
- Matière examinée: Deep learning in biomedicine
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Projet: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Pendant le semestre (session d'été)
- Matière examinée: Deep learning in biomedicine
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Projet: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Pendant le semestre (session d'été)
- Matière examinée: Deep learning in biomedicine
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Projet: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Pendant le semestre (session d'été)
- Matière examinée: Deep learning in biomedicine
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Projet: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
Semaine de référence
Lu | Ma | Me | Je | Ve | |
8-9 | |||||
9-10 | |||||
10-11 | |||||
11-12 | |||||
12-13 | |||||
13-14 | |||||
14-15 | |||||
15-16 | |||||
16-17 | |||||
17-18 | |||||
18-19 | |||||
19-20 | |||||
20-21 | |||||
21-22 |