Student seminar in pure mathematics
Summary
The goal of the seminar is to learn the main aspects of class field theory, which aims at understanding abelian extensions of global fields in terms of the arithmetic of the field. The theory can also be seenas a first instance of the Langlands correspondence.
Content
- Galois Cohomology
- Ideles
- Artin reciprocity
- The class field correspondence
Learning Prerequisites
Required courses
- Number theory I.a - Algebraic number theory
Recommended courses
- Algebra V - Galois Theory
- Rings and Modules
Learning Outcomes
By the end of the course, the student must be able to:
- Demonstrate their knowledge about global fields and class field theory
Transversal skills
- Make an oral presentation.
- Write a scientific or technical report.
- Access and evaluate appropriate sources of information.
Teaching methods
Each participant will lecture on a subject realted to class field theory. The lecture is complemented by the professor and exercise sessions.
Expected student activities
Prepare lectures, write lecture notes and solutions to exercises. Active participation during class and exercise sessions.
Assessment methods
The grade will depend on the participants oral presentation and written reports. There will be no final exam.
Resources
Bibliography
Class Field Theory by N. Childress
Class Field Theory by J.S. Milne
Algebraic Number Theory by J. W. S. Cassels and A. Frohlich
Moodle Link
Dans les plans d'études
- Semestre: Automne
- Forme de l'examen: Pendant le semestre (session d'hiver)
- Matière examinée: Student seminar in pure mathematics
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Automne
- Forme de l'examen: Pendant le semestre (session d'hiver)
- Matière examinée: Student seminar in pure mathematics
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Automne
- Forme de l'examen: Pendant le semestre (session d'hiver)
- Matière examinée: Student seminar in pure mathematics
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Automne
- Forme de l'examen: Pendant le semestre (session d'hiver)
- Matière examinée: Student seminar in pure mathematics
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel