Student seminar in pure mathematics
Summary
This seminar will be an introduction to homological algebra, a tool widely used in topology, algebraic geometry and many other modern areas of mathematics.
Content
- Abelian categories, derived functors
- Spectral sequences
- Derived categories
- Applications in topology, geometry and group theory
Learning Prerequisites
Required courses
- Rings and Modules
- Homology
Learning Outcomes
By the end of the course, the student must be able to:
- Apply tools provided by homological algebra
Transversal skills
- Make an oral presentation.
- Write a scientific or technical report.
- Access and evaluate appropriate sources of information.
Teaching methods
Each participant will lecture on a subject in homological algebra. The lecture is complemented by the professor and exercise sessions.
Expected student activities
Prepare lectures, write lecture notes and solutions to exercises. Active participation during class and exercise sessions.
Assessment methods
The grade will depend on the participants oral presentation and written reports. There will be no final exam.
Resources
Bibliography
An Introduction to Homological Algebra by C. Weibel
Ressources en bibliothèque
Moodle Link
Dans les plans d'études
- Semestre: Automne
- Forme de l'examen: Pendant le semestre (session d'hiver)
- Matière examinée: Student seminar in pure mathematics
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Automne
- Forme de l'examen: Pendant le semestre (session d'hiver)
- Matière examinée: Student seminar in pure mathematics
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Automne
- Forme de l'examen: Pendant le semestre (session d'hiver)
- Matière examinée: Student seminar in pure mathematics
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Automne
- Forme de l'examen: Pendant le semestre (session d'hiver)
- Matière examinée: Student seminar in pure mathematics
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
Semaine de référence
Lu | Ma | Me | Je | Ve | |
8-9 | |||||
9-10 | |||||
10-11 | |||||
11-12 | |||||
12-13 | |||||
13-14 | |||||
14-15 | |||||
15-16 | |||||
16-17 | |||||
17-18 | |||||
18-19 | |||||
19-20 | |||||
20-21 | |||||
21-22 |