MATH-318 / 5 crédits

Enseignant: Duparc Jacques

Langue: Anglais


Summary

Set Theory as a foundational system for mathematics. ZF, ZFC and ZF with Atoms. Relative consistency of the Axiom of Choice, the Continuum Hypothesis, the reals as a countable union of countable sets, the existence of a countable family of pairs without any choice function. Etc.

Content

Part I: The Theory Itself:

 

1.The Axioms

2. Well-orderings and Ordinals

3. Extension by Definition and Conservative Extension

4. axiom of Choice and Cardinals

5. Well-Founded Sets and the Axiom of Foundation

 

Part II: Relativization and Absoluteness

 

6 From Inside a Class (Relativization)

7 The Mostowski Collapse

8 Preservation under Relativization and Absoluteness

 

Part III: The Consistency of ZF

 

9 Arithmetic and Recursivity

10 Jech's Proof of Gödel's Second Incompleteness Theorem for Set Theory

 

Part IV: Gödel's Constructible Universe

 

11 The Constructible Sets 1

12 AC and CH inside Gödel's Constructible Universe

 

Part V: Forcing

 

13 Forcing Conditions and Generic Filters

14 P-names and Generic Extensions

15 The Truth Lemma

16 ZFC within the Generic Extension and Cardinal Preservation

17 Independence of CH

18 Independence of AC

 

Part VI: ZF without the Axiom of Choice

 

19 Cardinality Revisited

20 About R without the axiom of choice (Outcomes of the reals as a Countable Union of Countable Sets)

21 Symmetric Submodels of Generic Extensions

22 Some Applications of the Symmetric Submodel Technique

22.1 Forcing the reals as a Countable Union of Countable Sets

22.2 Forcing the Well-Orderings of the Reals Out

22.3 Forcing Every Ultrafilter on ω is Principal

 

Part VII: Set Theory with Atoms

 

23 Atoms and Permutation Models

23.1 Zermelo-Fraenkel with Atoms (ZFA)

23.2 Permutation Models

23.3 The Basic Fraenkel Model

23.4 The Second Fraenkel Model

23.5 The Ordered Mostowski Model

24 Simulating Permutation Models by Symmetric Models

24.1 The Jech-Sochor Embedding Theorem

24.2 Some applications of the Jech-Sochor Embedding Theorem

Keywords

Set Theory, Relative consistency, ZFC, Ordinals, Cardinals, Transfinite recursion, Relativization, Absoluteness, Constructible universe, L, Axiom of Choice, Continuum hypothesis, Forcing, Generic extensions

Learning Prerequisites

Required courses

MATH-381 Mathematical Logic (or any equivalent course).
In particular ordinal and cardinal numbers, ordinal and cardinal arithmetic will be considered known and admitted.

 

Recommended courses

Mathematical logic (or any equivalent course on first order logic). Warning: without a good understanding of first order logic, students tend to get definitely lost sooner or later.

Important concepts to start the course

 

  • 1st order logic
  • ordinal and cardinal arithmetics
  • elements of proof theory
  • very basic knowledge of model theory
  • the compactness theorem
  • Löwenheim-Skolem theorem
  • the completeness theorem for 1st order logic

 

Learning Outcomes

By the end of the course, the student must be able to:

  • Specify a model of ZFC
  • Prove consistency results
  • Develop a generic extension
  • Argue by transfinite induction
  • Decide whether ZFC proves its own consistency
  • Formalize the axioms of ZF, AC, CH, DC
  • Sketch an inner model
  • Justify the axiom of foundation
  • Formalize a model in which the reals are a countable union of countable sets
  • Produce a model in which a countable set of pairs has no choice function
  • Create a model in which the finite subsets of an infinite set is mapped onto the set of all its subsets

Teaching methods

Ex cathedra lecture and exercises

Expected student activities

  • Attendance at lectures
  • Solve the exercises

Assessment methods

  • Writen exam (3 hours)
  • Dans le cas de l'art. 3 al. 5 du Règlement de section, l'enseignant décide de la forme de l'examen qu'il communique aux étudiants concernés

Supervision

Office hours No
Assistants Yes
Forum Yes

Resources

Virtual desktop infrastructure (VDI)

No

Bibliography

  1. Kenneth Kunen: Set theory, Springer, 1983
  2. Lorenz Halbeisen: Combinatorial Set Theory, Springer 2018
  3. Thomas Jech: Set theory, Springer 2006
  4. Jean-Louis Krivine: Theorie des ensembles, 2007
  5. Patrick Dehornoy: Logique et théorie des ensembles; Notes de cours, FIMFA ENS: http://www.math.unicaen.fr/~dehornoy/surveys.html
  6. Yiannis Moschovakis: Notes on set theory, Springer 2006
  7. Karel Hrbacek and Thomas Jech: Introduction to Set theory, (3d edition), 1999

Ressources en bibliothèque

Notes/Handbook

Lecture notes on Moodle (417 pages).

Moodle Link

Dans les plans d'études

  • Semestre: Printemps
  • Forme de l'examen: Ecrit (session d'été)
  • Matière examinée: Set theory
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Type: optionnel
  • Semestre: Printemps
  • Forme de l'examen: Ecrit (session d'été)
  • Matière examinée: Set theory
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Type: optionnel
  • Semestre: Printemps
  • Forme de l'examen: Ecrit (session d'été)
  • Matière examinée: Set theory
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Type: optionnel

Semaine de référence

Cours connexes

Résultats de graphsearch.epfl.ch.