Set theory
Summary
Set Theory as a foundational system for mathematics. ZF, ZFC and ZF with Atoms. Relative consistency of the Axiom of Choice, the Continuum Hypothesis, the reals as a countable union of countable sets, the existence of a countable family of pairs without any choice function. Etc.
Content
Part I: The Theory Itself:
1.The Axioms
2. Well-orderings and Ordinals
3. Extension by Definition and Conservative Extension
4. axiom of Choice and Cardinals
5. Well-Founded Sets and the Axiom of Foundation
Part II: Relativization and Absoluteness
6 From Inside a Class (Relativization)
7 The Mostowski Collapse
8 Preservation under Relativization and Absoluteness
Part III: The Consistency of ZF
9 Arithmetic and Recursivity
10 Jech's Proof of Gödel's Second Incompleteness Theorem for Set Theory
Part IV: Gödel's Constructible Universe
11 The Constructible Sets 1
12 AC and CH inside Gödel's Constructible Universe
Part V: Forcing
13 Forcing Conditions and Generic Filters
14 P-names and Generic Extensions
15 The Truth Lemma
16 ZFC within the Generic Extension and Cardinal Preservation
17 Independence of CH
18 Independence of AC
Part VI: ZF without the Axiom of Choice
19 Cardinality Revisited
20 About R without the axiom of choice (Outcomes of the reals as a Countable Union of Countable Sets)
21 Symmetric Submodels of Generic Extensions
22 Some Applications of the Symmetric Submodel Technique
22.1 Forcing the reals as a Countable Union of Countable Sets
22.2 Forcing the Well-Orderings of the Reals Out
22.3 Forcing Every Ultrafilter on Ï is Principal
Part VII: Set Theory with Atoms
23 Atoms and Permutation Models
23.1 Zermelo-Fraenkel with Atoms (ZFA)
23.2 Permutation Models
23.3 The Basic Fraenkel Model
23.4 The Second Fraenkel Model
23.5 The Ordered Mostowski Model
24 Simulating Permutation Models by Symmetric Models
24.1 The Jech-Sochor Embedding Theorem
24.2 Some applications of the Jech-Sochor Embedding Theorem
Keywords
Set Theory, Relative consistency, ZFC, Ordinals, Cardinals, Transfinite recursion, Relativization, Absoluteness, Constructible universe, L, Axiom of Choice, Continuum hypothesis, Forcing, Generic extensions
Learning Prerequisites
Required courses
MATH-381 Mathematical Logic (or any equivalent course).
In particular ordinal and cardinal numbers, ordinal and cardinal arithmetic will be considered known and admitted.
Recommended courses
Mathematical logic (or any equivalent course on first order logic). Warning: without a good understanding of first order logic, students tend to get definitely lost sooner or later.
Important concepts to start the course
- 1st order logic
- ordinal and cardinal arithmetics
- elements of proof theory
- very basic knowledge of model theory
- the compactness theorem
- Löwenheim-Skolem theorem
- the completeness theorem for 1st order logic
Learning Outcomes
By the end of the course, the student must be able to:
- Specify a model of ZFC
- Prove consistency results
- Develop a generic extension
- Argue by transfinite induction
- Decide whether ZFC proves its own consistency
- Formalize the axioms of ZF, AC, CH, DC
- Sketch an inner model
- Justify the axiom of foundation
- Formalize a model in which the reals are a countable union of countable sets
- Produce a model in which a countable set of pairs has no choice function
- Create a model in which the finite subsets of an infinite set is mapped onto the set of all its subsets
Teaching methods
Ex cathedra lecture and exercises
Expected student activities
- Attendance at lectures
- Solve the exercises
Assessment methods
- Writen exam (3 hours)
- Dans le cas de l'art. 3 al. 5 du Règlement de section, l'enseignant décide de la forme de l'examen qu'il communique aux étudiants concernés
Supervision
Office hours | No |
Assistants | Yes |
Forum | Yes |
Resources
Virtual desktop infrastructure (VDI)
No
Bibliography
- Kenneth Kunen: Set theory, Springer, 1983
- Lorenz Halbeisen: Combinatorial Set Theory, Springer 2018
- Thomas Jech: Set theory, Springer 2006
- Jean-Louis Krivine: Theorie des ensembles, 2007
- Patrick Dehornoy: Logique et théorie des ensembles; Notes de cours, FIMFA ENS: http://www.math.unicaen.fr/~dehornoy/surveys.html
- Yiannis Moschovakis: Notes on set theory, Springer 2006
- Karel Hrbacek and Thomas Jech: Introduction to Set theory, (3d edition), 1999
Ressources en bibliothèque
- Introduction to Set theory / Hrbacek
- Set theory / Jech
- Theorie des ensembles / Krivine
- Set theory / Kunen
- Notes on set theory / Moschovakis
- Logique et théorie des ensembles / Dehorny
- Combinatorial Set Theory / Halbeisen
Notes/Handbook
Lecture notes on Moodle (417 pages).
Moodle Link
Dans les plans d'études
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Set theory
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Set theory
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Set theory
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
Semaine de référence
Lu | Ma | Me | Je | Ve | |
8-9 | |||||
9-10 | |||||
10-11 | |||||
11-12 | |||||
12-13 | |||||
13-14 | |||||
14-15 | |||||
15-16 | |||||
16-17 | |||||
17-18 | |||||
18-19 | |||||
19-20 | |||||
20-21 | |||||
21-22 |
Légendes:
Cours
Exercice, TP
Projet, Labo, autre