Error control in scientific modelling
Summary
Errors are ubiquitous in computational science as neither models nor numerical techniques are perfect. With respect to eigenvalue problems motivated from materials science and atomistic modelling we discuss, implement and apply numerical techniques for estimating simulation error.
Content
- Important eigenvalue problems in materials science
- Motivation for studying errors in eigenvalue problems
- Types of simulation error
- Residual-error relationships for eigenvalue problems
- Perturbation theory and parametrised eigenvalue problems
- Subtleties of infinite-dimensional eigenvalue problems
- Discretisation and discretisation error
- Plane-wave basis sets
- Errors due to uncertain parameters (if time permits)
- Non-linear eigenvalue problems (if time permits)
Learning Prerequisites
Required courses
- Analysis
- Linear algebra
- Exposure to numerical linear algebra
- Exposure to numerical methods for solving differential equations (such as finite-element methods, finite-difference approaches, plane-wave methods)
- Exposure to implementing numerical algorithms (e.g. using Python or Julia)
This course delivers a mathematical viewpoint on materials modelling and it is explicitly intended for an interdisciplinary student audience. To keep it accessible, the key mathematical and physical concepts will both be revised as we go along. However, the learning curve will be steep and an interest to learn about the respective other discipline is required. The problem sheets and the project require a substantial amount of work and feature both theoretical (proof-oriented) and applied (programming-based and simulation-based) components. While there is some freedom for students to select their respective focus, students are encouraged to team up across the discplines for the course work.
Teaching methods
Lectures + exercises
Expected student activities
Students are expected to attend lectures and participate actively in class and exercises. Exercises will include theoretical, programming and simulation-based assignments. Students also complete substantial group project that contain (to varying extend) theoretical and applied components.
Assessment methods
Project during the semester and oral exam
Resources
Bibliography
There is no single textbook corresponding to the content of the course. Parts of the lectures have substantial overlap with the following resources, where further information can be found.
- Youssef Saad. *Numerical Methods for Large Eigenvalue Problems*, SIAM (2011).
- Nicholas J. Higham. *Accuracy and Stability of Numerical Algorithms*, SIAM (2002).
- Peter Arbenz. *Lecture notes on solving large scale eigenvalue problems*, ETHZ.
- Mathieu Lewin. *Théorie spectrale et mécanique quantique*, Springer (2022).
Ressources en bibliothèque
- Numerical Methods for Large Eigenvalue Problems / Saad
- Accuracy and Stability of Numerical Algorithms / Higham
- Lecture notes on solving large scale eigenvalue problems / Arbenz
- Théorie spectrale et mécanique quantique / Lewin
Websites
Moodle Link
Dans les plans d'études
- Semestre: Automne
- Forme de l'examen: Oral (session d'hiver)
- Matière examinée: Error control in scientific modelling
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Automne
- Forme de l'examen: Oral (session d'hiver)
- Matière examinée: Error control in scientific modelling
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Automne
- Forme de l'examen: Oral (session d'hiver)
- Matière examinée: Error control in scientific modelling
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Automne
- Forme de l'examen: Oral (session d'hiver)
- Matière examinée: Error control in scientific modelling
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Automne
- Forme de l'examen: Oral (session d'hiver)
- Matière examinée: Error control in scientific modelling
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Automne
- Forme de l'examen: Oral (session d'hiver)
- Matière examinée: Error control in scientific modelling
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Forme de l'examen: Oral (session d'hiver)
- Matière examinée: Error control in scientific modelling
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel