Empirical processes
Summary
We learn how to control the nonasymptotic and random behavior of collections of estimators, when indexed by classes of functions/sets. Examples range from prototypical estimators used by statisticians, to nonparametric models used in machine learning.
Content
This course provides central results and methods to understand and derive generalization guarantees of modern learning algorithms. The main topics are:
- Basic probabilistic inequalities: methods and results.
- Symmetrization and chaining methods.
- How to measure the complexity of classes of functions: from combinatorial and entropic considerations to random measures.
- Concentration-of-measure phenomenon: maximal inequalities and concentration inequalities of suprema of empirical processes.
- Recent advances in empirical process theory applied to statistical learning.
The exposed methods and results will be illustrated with statistical applications related to machine learning (especially classification and regression methods) and hypothesis testing throughout the lecture and exercise sessions.
Keywords
Empirical processes, concentration of measure, probabilistic inequalities, generalization properties, learning algorthims.
Learning Prerequisites
Important concepts to start the course
Previous courseworks in analysis, mathematical statistics and probability are highly required, with interests in statistical learning theory and algorithms.
Learning Outcomes
By the end of the course, the student must be able to:
- Formulate the fundamental framework related to empirical processes
- Manipulate probabilistic inequalities to empirical estimators
- Describe the concept of concentration-of-measure phenomenon for empirical processes
- Apply concentration inequalities to derive the performance of statistical learning procedures
Teaching methods
The semester will be composed of:
- Blackboard lectures.
- Exercise sessions.
Expected student activities
Student are expected to:
- Attend to all lectures.
- Participate to exercise weekly sessions.
Assessment methods
Written final exam; mini project.
Supervision
Office hours | No |
Assistants | Yes |
Forum | No |
Resources
Bibliography
- Stéphane Boucheron, Gábor Lugosi, and Pascal Massart, Concentration Inequalities: A Nonasymptotic Theory of Independence. Oxford University Press, Oxford Academic, 2013.
- Víctor H. Peña , Evarist Giné, Decoupling. From Dependence to Independence. Probability and Its Applications (PIA), Springer New York, 1999.
- Martin J. Wainwright. High-Dimensional Statistics, A Non-Asymptotic Viewpoint. Cambridge University Press, 2019.
Notes/Handbook
Yes
Moodle Link
Dans les plans d'études
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Empirical processes
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Empirical processes
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Empirical processes
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Empirical processes
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Empirical processes
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Empirical processes
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
Semaine de référence
Lu | Ma | Me | Je | Ve | |
8-9 | |||||
9-10 | |||||
10-11 | |||||
11-12 | |||||
12-13 | |||||
13-14 | |||||
14-15 | |||||
15-16 | |||||
16-17 | |||||
17-18 | |||||
18-19 | |||||
19-20 | |||||
20-21 | |||||
21-22 |
Légendes:
Cours
Exercice, TP
Projet, Labo, autre