Computational optimal transport
Summary
Computational aspects of measure transportation, from classical optimal transport to modern denoising diffusion models.
Content
- basics of optimal transport theory (discrete and continuous settings, duality and Brenier theorem)
- particular cases: optimal transport in 1D and between Gaussians and matching algorithms
- entropic regularization of optimal transport, Schrödinger bridge problem, Sinkhorn's algorithm and its convergence
- Wasserstein barycenters
- W1, Integral probability metrics and divergences on the space of probability measures
- Wassersteing gradient flows (theory and applications)
- Generative models via denoising diffusion and flow matching
Keywords
optimal transport, space of probability measures, Wasserstein, Sinkhorn, diffusion models
Learning Prerequisites
Required courses
Analysis, Linear Algebra, Probability and Statistics, notions of Partial Differential Equations
Recommended courses
Optimal Transport (fall course): it is recommended to follow this course, but not necessary as the required theory will be recalled
Important concepts to start the course
-
A good knowledge of undergraduate mathematics is important.
-
Ability to code in a scientific computing programming language of your choice (e.g. Python, Matlab, Julia). The course will involve coding exercises.
Teaching methods
Blackboard (or tablet) lectures
Assessment methods
Written exam
Resources
Virtual desktop infrastructure (VDI)
No
Bibliography
- An idea of the course content can be found in "Optimal Transport for Machine Learners" by Gabriel Peyré (available online at https://arxiv.org/pdf/2505.06589)
Références suggérées par la bibliothèque
Moodle Link
Dans les plans d'études
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Computational optimal transport
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Computational optimal transport
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Computational optimal transport
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Computational optimal transport
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Computational optimal transport
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Computational optimal transport
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
Semaine de référence
Lu | Ma | Me | Je | Ve | |
8-9 | |||||
9-10 | |||||
10-11 | |||||
11-12 | |||||
12-13 | |||||
13-14 | |||||
14-15 | |||||
15-16 | |||||
16-17 | |||||
17-18 | |||||
18-19 | |||||
19-20 | |||||
20-21 | |||||
21-22 |
Légendes:
Cours
Exercice, TP
Projet, Labo, autre