Advanced analytic number theory
MATH-521 / 5 crédits
Enseignant: Michel Philippe
Langue: Anglais
Remark: Cours donné en alternance tous les deux ans
Summary
This year we will present some further applications of the theory of modular forms (compared to MATH-511). These may include the following: - Equidistribution of points on spheres - Construction of Ramanujan Graph - Invariant means on the spheres - Complex multiplication for elliptic curves
Content
The course will have some overlap with MATH-511 but the applications presented are somewhat different.
Harmonic analysis on the sphere
The upper half plane and the group of fractional linear transformations
Modular forms: définitions and examples (Eisenstein series, theta series)
Fourier coefficients of modular forms; Petersson inner product and Ptersson formula.
Hecke operators.
Equidistribution on the sphere.
Expander graphs/Ramanujan graphs
Modular forms and elliptic curves.
Keywords
Modular forms, theta series, Fourier coefficients
Equidistribution
Graphs
Elliptic curves
Learning Prerequisites
Required courses
Fourier Analysis
Harmonic analysis
Modular Forms
Recommended courses
Analytic Number Theory
Algebraic Number Theory
Learning Outcomes
- Quote the main results of the course
- Use the main results of the course
- Prove the main results of the course
Teaching methods
Ex cathedra lecture and exercises in the classroom
Expected student activities
Attendence to the lectures and active participation to thhe exercise sessions
Assessment methods
Oral exam
====================
Dans le cas de l'art. 3 al. 5 du Règlement de section, l'enseignant décide de la forme de l'examen qu'il communique aux
étudiants concernés.
Supervision
Office hours | No |
Assistants | Yes |
Forum | No |
Others | moodle |
Resources
Virtual desktop infrastructure (VDI)
No
Bibliography
Fred Diamond: A first course on modular forms.
Henryk Iwaniec: Topics on Classical automorphic forms
Peter Sarnak: Some applications of modular forms
Ressources en bibliothèque
- Small gaps between primes / Manyard
- Gaps between prime numbers and primes in arithmetic progressions / Kowalski
- Analytic Number Theory / Kowalski-Iwaniec
Moodle Link
Prerequisite for
Fields medal
Dans les plans d'études
- Semestre: Printemps
- Forme de l'examen: Oral (session d'été)
- Matière examinée: Advanced analytic number theory
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Oral (session d'été)
- Matière examinée: Advanced analytic number theory
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Oral (session d'été)
- Matière examinée: Advanced analytic number theory
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
Semaine de référence
Lu | Ma | Me | Je | Ve | |
8-9 | |||||
9-10 | |||||
10-11 | |||||
11-12 | |||||
12-13 | |||||
13-14 | |||||
14-15 | |||||
15-16 | |||||
16-17 | |||||
17-18 | |||||
18-19 | |||||
19-20 | |||||
20-21 | |||||
21-22 |
Légendes:
Cours
Exercice, TP
Projet, Labo, autre