Algorithmic game theory
Summary
We will study mathematical models of the interplay between algorithms and strategic behavior. We cover fundamental concepts from game theory and mechanism design, including Nash equilibria, the price of anarchy, auctions and market design, incentive compatibility, and online learning and dynamics.
Content
Keywords
game theory, algorithms, mechanism design, auctions, nash equilibrium
Learning Prerequisites
Recommended courses
Algorithms, Probability, Linear Algebra, Optimization
Learning Outcomes
By the end of the course, the student must be able to:
- Formulate a game-theoretic model of the interaction of strategic agents.
- Compare different equilibrium notions.
- Analyze incentives in a game-theoretic model.
- Quantify the efficiency of decentralized behavior using the concept of Price of Anarchy.
- Reason about the concept of Nash equilibrium and understand how it can be used to model strategic behavior.
- Design and analyze algorithms and mechanisms tailored for the interaction with strategic users.
- Recognize the basic limitations of standard game theoretic models.
Transversal skills
- Communicate effectively, being understood, including across different languages and cultures.
- Assess one's own level of skill acquisition, and plan their on-going learning goals.
- Demonstrate the capacity for critical thinking
Teaching methods
Classical formal teaching interlaced with practical exercices.
Expected student activities
Active participation in exercise sessions is essential.
Assessment methods
- 30% midterm exam
- 70% final exam
Supervision
Office hours | Yes |
Assistants | Yes |
Forum | No |
Resources
Bibliography
Algorithmic Game Theory. Nisan, Roughgarden, Tardos & Vazirani (2007).
Twenty Lectures on Algorithmic Game Theory. Roughgarden (2016).
Ressources en bibliothèque
Moodle Link
Dans les plans d'études
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Algorithmic game theory
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Algorithmic game theory
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Algorithmic game theory
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Algorithmic game theory
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Algorithmic game theory
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Type: optionnel
Semaine de référence
Lu | Ma | Me | Je | Ve | |
8-9 | |||||
9-10 | |||||
10-11 | |||||
11-12 | |||||
12-13 | |||||
13-14 | |||||
14-15 | |||||
15-16 | |||||
16-17 | |||||
17-18 | |||||
18-19 | |||||
19-20 | |||||
20-21 | |||||
21-22 |
Légendes:
Cours
Exercice, TP
Projet, Labo, autre