Micro/Nano robotics
Summary
The objective of this course is to expose students to the fundamentals of robotics at small scale. This includes a focus on physical laws that predominate at the nano and microscale, technologies for fabricating small devices, bioinspired design and control paradigms, and applications of the field.
Content
The course will cover the micro/nanoscale physics, sensors, actuators, manipulators, power sources, interfacing, robotic design, and control issues. After providing the basic background, we will explore the current trends in the literature, discuss select case studies, and develop conceptual novel solutions for outstanding issues. The course will be divided into the following sections:
- Multiphysics and Scaling Laws
- Design and Manufacturing
- Sensors
- Actuators
- Energy (power) Sources
- Manipulation and Locomotion
- Control and Localization
- Applications
Keywords
multiphysics, design and manufacturing of small scale machinery, wireless power transmission, bioinspired engineering, principles of biological actuation, mobile robots
Learning Prerequisites
Recommended courses
ME-426 Micro/Nanomechanical devices
Learning Outcomes
By the end of the course, the student must be able to:
- Formulate the specifications of a mechatronic system, A17
- Design mechatronic systems (choice of sensors, actuators, embedded systems), A20
- Explain and apply the concepts of mass, energy, and momentum balance, E1
- Model design, and optimize energy conversion systems and industrial processes, E22
- Characterize expermentally the steady-state or dynamic response of solids and fluids, S11
- Apply adapt, and synthesize learned engineering skills to create novel solutions, CP14
- Expound and iterate multiple design concepts based on the models and simulations, CP15
- Describe in scientific terms and apply the principles of tribology and contact mechanics, S13
- Formulate the specifications of a mechatronic system, A17
- Design mechatronic systems (choice of sensors, actuators, embedded systems), A20
- Explain and apply the concepts of mass, energy, and momentum balance, E1
- Model design, and optimize energy conversion systems and industrial processes, E22
- Characterize expermentally the steady-state or dynamic response of solids and fluids, S11
- Apply adapt, and synthesize learned engineering skills to create novel solutions, CP14
- Expound and iterate multiple design concepts based on the models and simulations, CP15
- Describe in scientific terms and apply the principles of tribology and contact mechanics, S13
Transversal skills
- Make an oral presentation.
- Summarize an article or a technical report.
- Write a scientific or technical report.
- Access and evaluate appropriate sources of information.
- Evaluate one's own performance in the team, receive and respond appropriately to feedback.
Teaching methods
- Ex catedra
- Exercises
- Presentation from students on different reports/articles
- Presentation from students on their project
Expected student activities
- Active participation
- Reading of background literature suggested in the class
- Critical reading of technical articles and presentation in class
Assessment methods
- Literature Review Report (25%)
- Assignments (25%)
- Final Project (50%)
Supervision
Office hours | Yes |
Assistants | Yes |
Forum | No |
Resources
Bibliography
- Microrobotics: Methods and Applications. Yves Bellouard. CRC Press, 2009.
- Microsystem Technology and Microrobotics. S. Fatikow and U. Rembold. Springer Verlag, 1997.
- Mobile Microrobotics. Metin Sitti. The MIT Press, 2017.
- Intermolecular and Surface Forces. J. Israelachvili. Academic Press Ltd, 2011
Ressources en bibliothèque
- Intermolecular and Surface Forces/ Israelachvili
- Microsystem Technology and Microrobotics / Fatikow, Rembold
- Microrobotics: Methods and Applications / Bellouard
- Mobile Microrobotics / Sitti
Moodle Link
Dans les plans d'études
- Semestre: Printemps
- Forme de l'examen: Pendant le semestre (session d'été)
- Matière examinée: Micro/Nano robotics
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Pendant le semestre (session d'été)
- Matière examinée: Micro/Nano robotics
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Pendant le semestre (session d'été)
- Matière examinée: Micro/Nano robotics
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Pendant le semestre (session d'été)
- Matière examinée: Micro/Nano robotics
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Pendant le semestre (session d'été)
- Matière examinée: Micro/Nano robotics
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Pendant le semestre (session d'été)
- Matière examinée: Micro/Nano robotics
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Printemps
- Forme de l'examen: Pendant le semestre (session d'été)
- Matière examinée: Micro/Nano robotics
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Forme de l'examen: Pendant le semestre (session d'été)
- Matière examinée: Micro/Nano robotics
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Type: optionnel
Semaine de référence
Lu | Ma | Me | Je | Ve | |
8-9 | |||||
9-10 | |||||
10-11 | |||||
11-12 | |||||
12-13 | |||||
13-14 | |||||
14-15 | |||||
15-16 | |||||
16-17 | |||||
17-18 | |||||
18-19 | |||||
19-20 | |||||
20-21 | |||||
21-22 |