MICRO-420 / 3 crédits

Enseignant: Martin Olivier

Langue: Anglais


Summary

Modern imaging systems combine traditional optical devices (lenses, endoscopes, cameras, laser scanners, etc) with digital computers. In this course we will learn how to use computational tools to simulate the optical system and combine them with neural networks that process the optical images

Content

1. Optical wave propagation

  • Free space propagation
  • Beam propagation method
  • Thin transparencies-Lenses and gratings
  • Imaging
  • Digital Holography
  • Computer Generated Holograms

2. Multi-layer networks

3. Microscopy

  • DNN - Unet superresolution
  • DNN - Unet digital staining
  • DNN - Phase from Intensity

4. Scattering media

  • Phase conjugation
  • Matrix method
  • DNN for focusing and imaging through MMFs
  • Ptychography

5. Inverse scattering

  • Optical diffraction tomography
  • Inverst scattering-MaxwellNet

Keywords

Maxwell's equations, optics, photonics, polarization, material constants, dispersion, light scattering, Mie scattering, plasmonics, gratings, photonic crystals, metamaterials, metasurfaces.

Learning Prerequisites

Required courses

"MICRO-321 Ingenierie Optique" or any Bachelor level optics course

Recommended courses

General knowledge of fundamental optics

Learning Outcomes

By the end of the course, the student must be able to:

  • Analyze an optics problem
  • Develop a model for this problem
  • Synthesize the properties of different fundamental optical phenomena
  • Elaborate a deep understanding of the underlying phenomena
  • Model an optics problem using Matlab
  • Explore an optical parameter range using Matlab
  • Analyze an optics problem based on the laws of optics and electromagnetics

Transversal skills

  • Assess one's own level of skill acquisition, and plan their on-going learning goals.
  • Set objectives and design an action plan to reach those objectives.
  • Use both general and domain specific IT resources and tools

Teaching methods

Ex-cathedra and exercises on Matlab.

Expected student activities

Participate actively during the lecture and during the exercises with Matlab. Go through the solution of the exercises and seek feedback when necessary.

Assessment methods

Oral exam.

Supervision

Office hours Yes
Assistants Yes
Forum Yes

Resources

Virtual desktop infrastructure (VDI)

No

Bibliography

B.E.A. Saleh et M.C. Teich, "Fundamentals of photonics", 3rd Ed. Wiley (2019).

J.D. Jackson, "Classical electrodynamics", 3rd Ed. Wiley (1998).

J. Braat and P. Török, "Imaging optics", Cambridge University Press (2019).

A. Lipson, S.G. Lipson, and H. Lipson, "Optical physics", 4th Ed. Cambridge University Press (2011).

R.A. Chipman, W.-S.T. Lam and G. Young, "Polarized light and optical systems", CRC Press (2019).

 

Ressources en bibliothèque

Notes/Handbook

Provided on Moodle and during the lecture.

Moodle Link

Dans les plans d'études

  • Semestre: Automne
  • Forme de l'examen: Oral (session d'hiver)
  • Matière examinée: Selected topics in advanced optics
  • Cours: 3 Heure(s) hebdo x 14 semaines
  • Type: optionnel
  • Semestre: Automne
  • Forme de l'examen: Oral (session d'hiver)
  • Matière examinée: Selected topics in advanced optics
  • Cours: 3 Heure(s) hebdo x 14 semaines
  • Type: optionnel
  • Semestre: Automne
  • Forme de l'examen: Oral (session d'hiver)
  • Matière examinée: Selected topics in advanced optics
  • Cours: 3 Heure(s) hebdo x 14 semaines
  • Type: optionnel
  • Semestre: Automne
  • Forme de l'examen: Oral (session d'hiver)
  • Matière examinée: Selected topics in advanced optics
  • Cours: 3 Heure(s) hebdo x 14 semaines
  • Type: optionnel
  • Forme de l'examen: Oral (session d'hiver)
  • Matière examinée: Selected topics in advanced optics
  • Cours: 3 Heure(s) hebdo x 14 semaines
  • Type: optionnel
  • Semestre: Automne
  • Forme de l'examen: Oral (session d'hiver)
  • Matière examinée: Selected topics in advanced optics
  • Cours: 3 Heure(s) hebdo x 14 semaines
  • Type: optionnel

Semaine de référence

Mardi, 8h - 10h: Cours INM203

Mardi, 10h - 11h: Cours BC07-08

Cours connexes

Résultats de graphsearch.epfl.ch.