EE-736 / 3 crédits

Enseignant(s): Faulwasser Timm, Jiang Yuning

Langue: Anglais

Remark: Next time: Spring 2026


Frequency

Every 2 years

Summary

This doctoral course provides an introduction to optimal control covering fundamental theory, numerical implementation and problem formulation for applications.

Content

  • Recap of finite dimensional optimization and numerical methods for optimization
  • Fundamentals of Caculus of variations and optimization in function spaces
  • Closed-loop and open loop optimal control
  • Calculus of variations and optimal control
  • Pontryagin's Maximum Principle
  • Numerical optimal control
  • Singular problems and minimum time control
  • Dissipativity and optimal control
  • Hamilton-Jacobi-Bellman equations
  • Sampled-data predictive control
  • Research outlook
  • Exercises: pen and paper, programming; depending on the individual knowledge of the students

Learning Outcomes

By the end of the course, the student must be able to:

  • Solve control problems arising in their research projects by means of optimal control approaches.

Assessment methods

Oral presentation.

Resources

Bibliography

  • LIBERZON, Daniel. Calculus of variations and optimal control theory: a concise introduction. Princeton university press, 2011

Moodle Link

Dans les plans d'études

  • Nombre de places: 30
  • Forme de l'examen: Exposé (session libre)
  • Matière examinée: Optimal Control for Dynamic Systems
  • Cours: 32 Heure(s)
  • Exercices: 12 Heure(s)
  • Type: optionnel
  • Nombre de places: 30
  • Forme de l'examen: Exposé (session libre)
  • Matière examinée: Optimal Control for Dynamic Systems
  • Cours: 32 Heure(s)
  • Exercices: 12 Heure(s)
  • Type: obligatoire

Semaine de référence

Cours connexes

Résultats de graphsearch.epfl.ch.