Computational methods in molecular quantum mechanics
Summary
This course will discuss the main methods for the simulation of quantum time dependent properties for molecular systems. Basic notions of density functional theory will be covered. An introduction to simulating nuclear quantum effects for adiabatic and non adiabatic dynamics will be provided.
Content
Short repetition
Introduction to classical molecular dynamics simulations for molecular systems
Density Functional theory, basic theorems
Advanced topics
Time dependent Schroedinger equation for a system of nuclei and electrons. The coupled channels equation
Integration methods for first principles molecular dynamics with classical ions.
Adiabatic and non adiabatic molecular dynamics: approximate methods for numerical solution
Nuclear quantum effects.
Keywords
simulation and modelling of materials
quantum systems
Learning Prerequisites
Required courses
Basic quantum mechanics
Learning Outcomes
By the end of the course, the student must be able to:
- Prove the basic theorems of DFT
- Interpret input and output of typical community codes for classical and ab initio molecular dynamics
- Discuss the evolution of the different electronic structure methods for electronic excited states
- Discuss basic equations for quantum evolution of nuclei and electrons
Transversal skills
- Evaluate one's own performance in the team, receive and respond appropriately to feedback.
- Summarize an article or a technical report.
Expected student activities
Weakly summary (three point bullet list) of lecture material + question
Development (in team) of small research project, computational or based on literature
Oral presentation of research project
Assessment methods
1/4 Evaluation of weakly summaries
1/2 Development and presentation of research project
1/4 Oral exam on course topics
Dans les plans d'études
- Semestre: Automne
- Forme de l'examen: Oral (session d'hiver)
- Matière examinée: Computational methods in molecular quantum mechanics
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Automne
- Forme de l'examen: Oral (session d'hiver)
- Matière examinée: Computational methods in molecular quantum mechanics
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Automne
- Forme de l'examen: Oral (session d'hiver)
- Matière examinée: Computational methods in molecular quantum mechanics
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Automne
- Forme de l'examen: Oral (session d'hiver)
- Matière examinée: Computational methods in molecular quantum mechanics
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Automne
- Forme de l'examen: Oral (session d'hiver)
- Matière examinée: Computational methods in molecular quantum mechanics
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Automne
- Forme de l'examen: Oral (session d'hiver)
- Matière examinée: Computational methods in molecular quantum mechanics
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Forme de l'examen: Oral (session d'hiver)
- Matière examinée: Computational methods in molecular quantum mechanics
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Automne
- Forme de l'examen: Oral (session d'hiver)
- Matière examinée: Computational methods in molecular quantum mechanics
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Automne
- Forme de l'examen: Oral (session d'hiver)
- Matière examinée: Computational methods in molecular quantum mechanics
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 1 Heure(s) hebdo x 14 semaines
- Type: optionnel