Analysis III (for SV, MT)
Summary
The course studies the fundamental concepts of vector analysis and Fourier-Laplace analysis with a view to their use in solving multidisciplinary problems in scientific engineering.
Content
Vector analysis
The gradient, rotational, divergence and Laplacian operators. Curvilinear integrals and surface integrals. Vector and potential fields. Green's, divergence and Stokes' theorems.
Fourier analysis and Laplace transforms
Fourier series. Identity of Parceval. Fourier transforms. Identity of Plancherel. Laplace transforms. Applications to ordinary differential equations. Applications to partial differential equations.
Learning Prerequisites
Required courses
Analyse I, Analyse II, Algèbre linéaire.
Analysis I, Analysis II, Linear algebra.
Assessment methods
Exam written
Supervision
Office hours | No |
Assistants | Yes |
Forum | No |
Dans les plans d'études
- Semestre: Automne
- Forme de l'examen: Ecrit (session d'hiver)
- Matière examinée: Analysis III (for SV, MT)
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: obligatoire
- Semestre: Automne
- Forme de l'examen: Ecrit (session d'hiver)
- Matière examinée: Analysis III (for SV, MT)
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: obligatoire
- Semestre: Automne
- Forme de l'examen: Ecrit (session d'hiver)
- Matière examinée: Analysis III (for SV, MT)
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: obligatoire
Semaine de référence
Lu | Ma | Me | Je | Ve | |
8-9 | |||||
9-10 | |||||
10-11 | |||||
11-12 | |||||
12-13 | |||||
13-14 | |||||
14-15 | |||||
15-16 | |||||
16-17 | |||||
17-18 | |||||
18-19 | |||||
19-20 | |||||
20-21 | |||||
21-22 |