MATH-203(a) / 4 credits

Teacher: Monin Leonid

Language: English


Summary

The course studies the fundamental concepts of vector analysis and Fourier-Laplace analysis with a view to their use in solving multidisciplinary problems in scientific engineering.

Content

Vector analysis

The gradient, rotational, divergence and Laplacian operators. Curvilinear integrals and surface integrals. Vector and potential fields. Green's, divergence and Stokes' theorems.

Fourier analysis and Laplace transforms

Fourier series. Identity of Parceval. Fourier transforms. Identity of Plancherel. Laplace transforms. Applications to ordinary differential equations. Applications to partial differential equations.

Learning Prerequisites

Required courses

Analyse I, Analyse II, Algèbre linéaire.

Analysis I, Analysis II, Linear algebra.

Assessment methods

Exam written

Supervision

Office hours No
Assistants Yes
Forum No

Resources

Moodle Link

In the programs

  • Semester: Fall
  • Exam form: Written (winter session)
  • Subject examined: Analysis III (for SV, MT)
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Type: mandatory
  • Semester: Fall
  • Exam form: Written (winter session)
  • Subject examined: Analysis III (for SV, MT)
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Type: mandatory
  • Semester: Fall
  • Exam form: Written (winter session)
  • Subject examined: Analysis III (for SV, MT)
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Type: mandatory

Reference week

Thursday, 14h - 16h: Lecture CO1

Thursday, 16h - 18h: Exercise, TP CE1103
CE1105
CM1
CM1113

Related courses

Results from graphsearch.epfl.ch.