MATH-535 / 5 crédits

Enseignant: Chen Eric Yen-Yo

Langue: Anglais


Summary

This course is aimed to give students an introduction to the theory of algebraic curves and surfaces. In particular, it aims to develop the students' geometric intuition and combined with the basic algebraic geometry courses to build a strong foundation for further study.

Content

Keywords

Algebraic geometry, curves, surfaces, singularities, birational geometry

Learning Prerequisites

Required courses

  • Linear algebra
  • Group Theory
  • Rings and Modules
  • Modern Algebraic geometry

Recommended courses

  • Topology I & II
  • Algebraic topology
  • Differential geometry
  • Algebraic number theory
  • Schemes
  • Complex manifolds
  • Complex Analysis

Learning Outcomes

  • Analyze basic problems in algebraic geometry of curves and surfaces and solve them.
  • Recall the statements of basic theorems like Riemann-Roch, the Hodge index theorem, Castelnuovo's criteria, etc., and understand their proofs
  • Compute geometric and birational invariants of curves and surfaces in basic examples.
  • Formulate a sketch of the birational classification of surfaces and how to approach its proof.
  • Reason intuitively about curves and surfaces over the complex numbers.

Teaching methods

2h lectures+2h exercise sessions weekly.

Assessment methods

Oral Exam

Supervision

Office hours Yes
Assistants Yes
Forum No

Resources

Bibliography

We will follow mainly

  • Hartshorne, Algebraic Geometry
  • Liu, Algebraic Geometry and Arithmetic Curves
  • Beauville, Complex Algebraic Surfaces

Other resources students may want to look at are

  • R. Miranda, Algebraic Curves and Riemann Surfaces
  • M. Reid, Chapters on Algebraic Surfaces

Ressources en bibliothèque

Références suggérées par la bibliothèque

Moodle Link

Dans les plans d'études

  • Semestre: Printemps
  • Forme de l'examen: Oral (session d'été)
  • Matière examinée: Algebraic geometry III - selected topics
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Oral (session d'été)
  • Matière examinée: Algebraic geometry III - selected topics
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Oral (session d'été)
  • Matière examinée: Algebraic geometry III - selected topics
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines

Semaine de référence

 LuMaMeJeVe
8-9     
9-10     
10-11     
11-12     
12-13     
13-14     
14-15     
15-16     
16-17     
17-18     
18-19     
19-20     
20-21     
21-22