MATH-514 / 5 credits

Teacher:

Language: English

Remark: Pas donné en 2024-25


Summary

This course is an introduction to nonlinear Schrödinger equations (NLS) and, more generally, to nonlinear dispersive equations. We will discuss local and global well-posedness, conservation laws, the existence and stability of standing wave solutions, and solutions which blow up in finite time.

Content

Keywords

nonlinear Schrödinger equations; Hamiltonian dynamics; conservation laws; symmetries; standing waves; orbital stability; finite time blow-up

Learning Prerequisites

Required courses

Introduction to partial differential equations

Recommended courses

Equations aux dérivées partielles d'évolution; Analyse fonctionnelle I; Mesure et intégration; Equations différentielles ordinaires

Important concepts to start the course

résultats de base en intégration (convergence dominée, etc.); espaces de Sobolev, de Banach; convergence faible / forte; solutions faibles d'équations elliptiques; arguments de point fixe dans les espaces métriques

Learning Outcomes

By the end of the course, the student must be able to:

  • Define the main objects studied in the course
  • Prove properties of solutions of NLS, similar to the exercises
  • Prove (or sketch the proof of) the main results given in the lectures
  • Discuss qualitative properties of NLS solutions
  • Compute quantitative estimates useful to study the NLS dynamics
  • Apply the methods developed in the course to NLS and related equations

Teaching methods

blackboard lectures + exercise sessions

Assessment methods

oral

Resources

Moodle Link

In the programs

  • Semester: Spring
  • Exam form: Oral (summer session)
  • Subject examined: Nonlinear Schrödinger equations
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Type: optional
  • Semester: Spring
  • Exam form: Oral (summer session)
  • Subject examined: Nonlinear Schrödinger equations
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Type: optional
  • Semester: Spring
  • Exam form: Oral (summer session)
  • Subject examined: Nonlinear Schrödinger equations
  • Lecture: 2 Hour(s) per week x 14 weeks
  • Exercises: 2 Hour(s) per week x 14 weeks
  • Type: optional

Reference week

Related courses

Results from graphsearch.epfl.ch.