Algebra III - rings and fields
Caution, these contents corresponds to the coursebooks of last year
Résumé
C'est un cours introductoire dans la théorie d'anneau et de corps.
Contenu
Notions, constructions et théorèmes fondamentaux :
- anneaux, sous-anneaux, homomorphismes d'anneaux
- examples d'anneaux
- anneaux intègres, corps des fractions
- idéaux, anneaux quotients et ses porpriétés universelles, la caractéristique d'un anneau, opérations sur les idéaux, théorèmes de correspondence, produit d'anneaux, le théorème de restes chinois
- idéaux premiers et maximaux
Arithmétique dans les anneaux :
- anneaux euclidiens
- anneaux principaux
- éléments associés, premiers et irréductibles
- anneaux factoriels
- anneaux noethériens
- caractérisation d'être factoriel
- les lemmes et le théorème de Gauss
- critères d'irréductibilité
Théorie de corps :
- algèbres sur un corps
- extensions de corps, éléments algébriques et transcendants, le degré d'une extension de corps, extensions algébriques, construction des extensions simples
- corps de décompositions
- corps finis
- extensions séparables, théorème de l'élément primitif
- la théorie de Galois
- extensions purement inséparable, séparable-inséparable décomposition
- corps algébriquement clos, clotûre séparable, clotûre inséparable
Compétences requises
Cours prérequis indicatifs
- Structures algébriques
- Algèbre linéaire I et II
- Theorie des groupes
Méthode d'enseignement
Cours ex cathedra + exercices
Méthode d'évaluation
Examen final écrit.
Préparation pour
Cours de 3e année
In the programs
- Semester: Spring
- Exam form: Written (summer session)
- Subject examined: Algebra III - rings and fields
- Courses: 2 Hour(s) per week x 14 weeks
- Exercises: 2 Hour(s) per week x 14 weeks
- Type: mandatory
Reference week
Mo | Tu | We | Th | Fr | |
8-9 | |||||
9-10 | |||||
10-11 | |||||
11-12 | |||||
12-13 | |||||
13-14 | |||||
14-15 | |||||
15-16 | |||||
16-17 | |||||
17-18 | |||||
18-19 | |||||
19-20 | |||||
20-21 | |||||
21-22 |
Légendes:
Lecture
Exercise, TP
Project, Lab, other