MATH-100(b) / 8 credits

Teacher: Genoud François Samer

Language: French


Résumé

Dans ce cours, nous étudierons les notions fondamentales de l'analyse réelle, ainsi que le calcul différentiel et intégral pour les fonctions réelles d'une variable réelle.

Contenu

Mots-clés

raisonnement/rédaction mathématique, preuve, nombres réels, suite numérique, suite convergente/divergente, limite d'une suite, sous-suite, limite supérieure et limite inférieure, théorème de Bolzano-Weierstrass, série numérique, série convergente/divergente, fonction, limite d'une fonction en un point, continuité, continuité uniforme, suite de fonctions, convergence ponctuelle, convergence uniforme, dérivabilité, théorème des accroissements finis, développement limité, série entière, intégrale de Riemann, primitive, intégrale définie, changement de variable, intégrales impropres

Acquis de formation

  • Les buts principaux de ce cours sont: acquérir les compétences du raisonnement logique rigoureux et de la rédaction mathématique; apprendre à les appliquer pour démontrer les propriétés des objets fondamentaux de l'analyse réelle; développer la maîtrise du calcul différentiel et intégral pour les fonctions d'une variable.
  • L'étudiant apprendra à choisir les concepts d'analyse appropriés pour résoudre des problèmes (théoriques ou calculatoires) de façon indépendante. Il développera les capacités de conceptualisation et de modélisation permettant de bien poser un problème d'analyse et de le résoudre.
  • Les notions fondamentales de l'analyse concernent principalement la convergence et les processus de limite pour les suites et séries numériques, et pour les fonctions d'une variable. Celles-ci seront étudiées rigoureusement, avec pour but une compréhension profonde et une grande maîtrise technique du calcul différentiel et intégral.
  • À la fin de ce cours, l'étudiant devra être capable de : démontrer sa maîtrise des notions théoriques du cours (définitions, principaux théorèmes et leurs preuves) ; résoudre des exercices d'un niveau de difficulté similaire à ceux traités en classe ; modéliser un problème et utiliser les notions d'analyse vues au cours pour le résoudre.

Méthode d'enseignement

Cours ex cathedra et exercices en salle

Méthode d'évaluation

Examen écrit

Encadrement

Office hours Non
Assistants Oui
Forum électronique Oui

Ressources

Polycopiés

disponible sur le site web

Sites web

In the programs

  • Semester: Fall
  • Exam form: Written (winter session)
  • Subject examined: Advanced analysis I
  • Lecture: 4 Hour(s) per week x 14 weeks
  • Exercises: 4 Hour(s) per week x 14 weeks

Reference week

 MoTuWeThFr
8-9CO3 CO017
CO015
CO016
CO010
CO011
CO122
  
9-10   
10-11     
11-12     
12-13     
13-14CO017
CO015
CO016
CO010
CO011
CO122
    
14-15    
15-16 CO2   
16-17    
17-18     
18-19     
19-20     
20-21     
21-22     

Tuesday, 15h - 17h: Lecture CO2

Wednesday, 8h - 10h: Exercise, TP CO017
CO015
CO016
CO010
CO011
CO122

Monday, 8h - 10h: Lecture CO3

Monday, 13h - 15h: Exercise, TP CO017
CO015
CO016
CO010
CO011
CO122