Algebra
Summary
This is an introduction to modern algebra: groups, rings and fields.
Content
Integer numbers, Bezout's theorem. Groups, dihedral and symmetric groups. Group homomorphisms. Classification of finite abelian groups. Rings, ideals. Polynomial rings. Integral domains and Euclidean domains. Finite fields.
Keywords
Group, homomorphism, subgroup, normal subgroup, quotient group, cyclic group, symmetric group, order of the group, order of an element in the group, finite abelian groups. Ring, ideal, principal ideal, maximal ideal, principal ideal domain, Euler's totient function, field, finite field, characteristic of a field.
Learning Prerequisites
Required courses
Linear algebra
Recommended courses
Linear Algebra I, Analyse I, Analyse II
Learning Outcomes
By the end of the course, the student must be able to:
- Apply concepts and ideas of the course
- Reason rigorously using the notions of the course
- Choose an appropriate method to solve problems
- Identify the concepts relevant to each problem
- Apply concepts to solve problems similar to the examples shown in the course and in problem sets
- Solve new problems using the ideas of the course
- Implement appropriate methods to investigate the structure of a given group, ring or field, and study their properties
- Detect properties of algebraic objects
- Analyze finite groups
- Formulate structure of a finite abelian group in terms of cyclic groups
- Analyze structure of a ring, in particular polynomial rings
Teaching methods
Lectures and exercise sessions
Assessment methods
Written homework assignment (10% of the grade)
Written exam (90 % of the grade)
Supervision
Office hours | No |
Assistants | Yes |
Forum | Yes |
Resources
Bibliography
1. D.S. Dummit, R. M. Foote, Abstract Algebra. Wiley, Third Edition
2. S. Lang, Undergraduate Algebra. Undergraduate texts in Mathematics. Springer-Verlag, Inc. New York, second edition, 1990.
3. L. Childs, A Concrete Introduction to Higher Algebra. Undergraduate texts in Mathematics, Springer-Verlag, Inc. New York, 1995.
Ressources en bibliothèque
- Undergraduate Algebra / Lang
- Abstract algebra /Dummit
- A Concrete Introduction to Higher Algebra / Childs
Notes/Handbook
Complete lecture notes will be available in PDF
Moodle Link
Videos
Dans les plans d'études
- Semestre: Automne
- Forme de l'examen: Ecrit (session d'hiver)
- Matière examinée: Algebra
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Automne
- Forme de l'examen: Ecrit (session d'hiver)
- Matière examinée: Algebra
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Automne
- Forme de l'examen: Ecrit (session d'hiver)
- Matière examinée: Algebra
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: obligatoire
- Semestre: Automne
- Forme de l'examen: Ecrit (session d'hiver)
- Matière examinée: Algebra
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Automne
- Forme de l'examen: Ecrit (session d'hiver)
- Matière examinée: Algebra
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
Semaine de référence
Lu | Ma | Me | Je | Ve | |
8-9 | |||||
9-10 | |||||
10-11 | |||||
11-12 | |||||
12-13 | |||||
13-14 | |||||
14-15 | |||||
15-16 | |||||
16-17 | |||||
17-18 | |||||
18-19 | |||||
19-20 | |||||
20-21 | |||||
21-22 |