MATH-310 / 4 crédits

Enseignant: Lachowska Anna

Langue: Anglais


Summary

This is an introduction to modern algebra: groups, rings and fields.

Content

Integer numbers, Bezout's theorem. Groups, dihedral and symmetric groups. Group homomorphisms. Classification of finite abelian groups. Rings, ideals. Polynomial rings. Integral domains and Euclidean domains. Finite fields.

Keywords

Group, homomorphism, subgroup, normal subgroup, quotient group, cyclic group, symmetric group, order of the group, order of an element in the group, finite abelian groups.  Ring, ideal, principal ideal,  maximal ideal, principal ideal domain, Euler's totient function,  field, finite field, characteristic of a field.

Learning Prerequisites

Required courses

Linear algebra

Recommended courses

Linear Algebra I, Analyse I, Analyse II 

Learning Outcomes

By the end of the course, the student must be able to:

  • Apply concepts and ideas of the course
  • Reason rigorously using the notions of the course
  • Choose an appropriate method to solve problems
  • Identify the concepts relevant to each problem
  • Apply concepts to solve problems similar to the examples shown in the course and in problem sets
  • Solve new problems using the ideas of the course
  • Implement appropriate methods to investigate the structure of a given group, ring or field, and study their properties
  • Detect properties of algebraic objects
  • Analyze finite groups
  • Formulate structure of a finite abelian group in terms of cyclic groups
  • Analyze structure of a ring, in particular polynomial rings

Teaching methods

Lectures and exercise sessions

Assessment methods

Written homework assignment (10% of the grade)

Written exam (90 % of the grade)

 

 

Supervision

Office hours No
Assistants Yes
Forum Yes

Resources

Bibliography

1. D.S. Dummit, R. M. Foote, Abstract Algebra. Wiley, Third Edition

2. S. Lang, Undergraduate Algebra. Undergraduate texts in Mathematics. Springer-Verlag, Inc.  New York, second edition, 1990. 

3. L. Childs, A Concrete Introduction to Higher Algebra. Undergraduate texts in Mathematics, Springer-Verlag, Inc. New York, 1995. 

Ressources en bibliothèque

Notes/Handbook

Complete lecture notes will be available in PDF

Moodle Link

Videos

Dans les plans d'études

  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Algebra
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Type: optionnel
  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Algebra
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Type: optionnel
  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Algebra
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Type: obligatoire
  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Algebra
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Type: optionnel
  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Algebra
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Type: optionnel

Semaine de référence

Lundi, 15h - 17h: Cours CM1
CM4

Lundi, 17h - 19h: Exercice, TP CM1
CM4

Cours connexes

Résultats de graphsearch.epfl.ch.