Introduction to optimization and operations research
Summary
Introduction to major operations research models and optimization algorithms
Content
introduction to the course
Linear optimization - introduction
The simplex algorithm
Duality
Networks
Transhipment
Shortest path
Integer optimization - Branch and bound.
Unconstrained non linear optimization.
Learning Prerequisites
Required courses
Linear algebra
Analysis
Preliminary knowledge of Python is useful, but not required.
Teaching methods
The course combines ex-cathedra lectures (2 hours) with hands-on computer labs (2 hours).
The computer labs are based on Jupyter notebooks using Python, allowing students to experiment with the algorithms covered in class. The core structure of the Python code is provided, and students are tasked with completing specific parts to reinforce their understanding.
To support self-paced learning and avoid bottlenecks due to programming difficulties, fully worked solutions are also made available.
Assessment methods
The evaluation consists of two parts:
-
A closed-book exam with multiple-choice questions assessing the theoretical concepts.
-
An open-book, computer-based exam conducted in Jupyter notebooks, focused on practical exercises.
Resources
Virtual desktop infrastructure (VDI)
No
Bibliography
Bierlaire (2015) Optimization: principles and algorithms, EPFL Press
http://optimizationprinciplesalgorithms.com
Ressources en bibliothèque
Moodle Link
Prerequisite for
Dans les plans d'études
- Semestre: Automne
- Forme de l'examen: Ecrit (session d'hiver)
- Matière examinée: Introduction to optimization and operations research
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: obligatoire
- Semestre: Automne
- Forme de l'examen: Ecrit (session d'hiver)
- Matière examinée: Introduction to optimization and operations research
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: obligatoire
- Semestre: Automne
- Forme de l'examen: Ecrit (session d'hiver)
- Matière examinée: Introduction to optimization and operations research
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: obligatoire
- Semestre: Automne
- Forme de l'examen: Ecrit (session d'hiver)
- Matière examinée: Introduction to optimization and operations research
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: obligatoire
- Semestre: Automne
- Forme de l'examen: Ecrit (session d'hiver)
- Matière examinée: Introduction to optimization and operations research
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Automne
- Forme de l'examen: Ecrit (session d'hiver)
- Matière examinée: Introduction to optimization and operations research
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Automne
- Forme de l'examen: Ecrit (session d'hiver)
- Matière examinée: Introduction to optimization and operations research
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel