Advanced probability and applications
Summary
In this course, various aspects of probability theory are considered. The first part is devoted to the main theorems in the field (law of large numbers, central limit theorem, concentration inequalities), while the second part focuses on the theory of martingales in discrete time.
Content
- sigma-fields, random variables
- probability measures, distributions
- independence, convolution
- expectation, characteristic function
- random vectors and Gaussian random vectors
- inequalities, convergences of sequences of random variables
- laws of large numbers, applications and extensions
- convergence in distribution, central limit theorem and applications
- moments and Carleman's theorem
- concentration inequalities
- conditional expectation
- martingales, stopping times
- martingale convergence theorems
Keywords
probability theory, measure theory, martingales, convergence theorems
Learning Prerequisites
Required courses
Basic probability course
Calculus courses
Recommended courses
Complex analysis
Important concepts to start the course
This course is NOT an introductory course on probability: the students should have a good understanding and practice of basic probability concepts such as: distribution, expectation, variance, independence, conditional probability.
The students should also be at ease with calculus. Complex analyisis is a plus, but is not required.
On the other hand, no prior background on measure theory is needed for this course: we will go through the basic concepts one by one at the beginning.
Learning Outcomes
By the end of the course, the student must be able to:
- understand the main ideas at the heart of probability theory
Teaching methods
Ex cathedra and flipped lectures + exercise sessions
Expected student activities
active participation to exercise sessions
Assessment methods
graded homeworks 20%
midterm 20%
final exam 60%
Resources
Bibliography
Sheldon M. Ross, Erol A. Pekoz, A Second Course in Probability,1st edition, www.ProbabilityBookstore.com, 2007.
Jeffrey S. Rosenthal, A First Look at Rigorous Probability Theory,2nd edition, World Scientific, 2006.
Geoffrey R. Grimmett, David R. Stirzaker, Probability and Random Processes,3rd edition, Oxford University Press, 2001.
Richard Durrett, Probability: Theory and Examples, 4th edition, Cambridge University Press, 2010.
Patrick Billingsley, Probability and Measure, 3rd edition, Wiley, 1995.
Ressources en bibliothèque
- Probability and Random Processes
- Sheldon M. Ross, Erol A. Pekoz, A Second Course in Probability, 1st ed
- Patrick Billingsley, Probability and Measure, 3rd ed
- Richard Durrett, Probability: Theory and Examples, 4th ed
- Jeffrey S. Rosenthal, A First Look at Rigorous Probability Theory, 2nd ed
Notes/Handbook
available on the course website
Websites
Moodle Link
Prerequisite for
Advanced classes requiring a good knowledge of probability
In the programs
- Semester: Fall
- Exam form: Written (winter session)
- Subject examined: Advanced probability and applications
- Courses: 4 Hour(s) per week x 14 weeks
- Exercises: 2 Hour(s) per week x 14 weeks
- Type: mandatory
- Semester: Fall
- Exam form: Written (winter session)
- Subject examined: Advanced probability and applications
- Courses: 4 Hour(s) per week x 14 weeks
- Exercises: 2 Hour(s) per week x 14 weeks
- Type: mandatory
- Semester: Fall
- Exam form: Written (winter session)
- Subject examined: Advanced probability and applications
- Courses: 4 Hour(s) per week x 14 weeks
- Exercises: 2 Hour(s) per week x 14 weeks
- Type: optional
- Semester: Fall
- Exam form: Written (winter session)
- Subject examined: Advanced probability and applications
- Courses: 4 Hour(s) per week x 14 weeks
- Exercises: 2 Hour(s) per week x 14 weeks
- Type: optional
- Semester: Fall
- Exam form: Written (winter session)
- Subject examined: Advanced probability and applications
- Courses: 4 Hour(s) per week x 14 weeks
- Exercises: 2 Hour(s) per week x 14 weeks
- Type: optional
- Semester: Fall
- Exam form: Written (winter session)
- Subject examined: Advanced probability and applications
- Courses: 4 Hour(s) per week x 14 weeks
- Exercises: 2 Hour(s) per week x 14 weeks
- Type: optional
- Semester: Fall
- Exam form: Written (winter session)
- Subject examined: Advanced probability and applications
- Courses: 4 Hour(s) per week x 14 weeks
- Exercises: 2 Hour(s) per week x 14 weeks
- Type: optional
- Semester: Fall
- Exam form: Written (winter session)
- Subject examined: Advanced probability and applications
- Courses: 4 Hour(s) per week x 14 weeks
- Exercises: 2 Hour(s) per week x 14 weeks
- Type: optional
- Semester: Fall
- Exam form: Written (winter session)
- Subject examined: Advanced probability and applications
- Courses: 4 Hour(s) per week x 14 weeks
- Exercises: 2 Hour(s) per week x 14 weeks
- Type: optional
- Exam form: Written (winter session)
- Subject examined: Advanced probability and applications
- Courses: 4 Hour(s) per week x 14 weeks
- Exercises: 2 Hour(s) per week x 14 weeks
- Type: mandatory
- Semester: Fall
- Exam form: Written (winter session)
- Subject examined: Advanced probability and applications
- Courses: 4 Hour(s) per week x 14 weeks
- Exercises: 2 Hour(s) per week x 14 weeks
- Type: optional
- Exam form: Written (winter session)
- Subject examined: Advanced probability and applications
- Courses: 4 Hour(s) per week x 14 weeks
- Exercises: 2 Hour(s) per week x 14 weeks
- Type: optional
- Exam form: Written (winter session)
- Subject examined: Advanced probability and applications
- Courses: 4 Hour(s) per week x 14 weeks
- Exercises: 2 Hour(s) per week x 14 weeks
- Type: optional
Reference week
Mo | Tu | We | Th | Fr | |
8-9 | |||||
9-10 | |||||
10-11 | |||||
11-12 | |||||
12-13 | |||||
13-14 | |||||
14-15 | |||||
15-16 | |||||
16-17 | |||||
17-18 | |||||
18-19 | |||||
19-20 | |||||
20-21 | |||||
21-22 |