MATH-318 / 5 crédits

Enseignant: Duparc Jacques

Langue: Anglais

## Summary

Set Theory as a foundational system for mathematics. ZF, ZFC and ZF with atoms. Relative consistency of the Axiom of Choice, the Continuum Hypothesis, the reals as a countable union of countable sets, the existence of a countable family of pairs without any choice function.

## Keywords

Set Theory, Relative consistency, ZFC, Ordinals, Cardinals, Transfinite recursion, Relativization, Absoluteness, Constructible universe, L, Axiom of Choice, Continuum hypothesis, Forcing, Generic extensions

## Required courses

MATH-381 Mathematical Logic (or any equivalent course).
In particular ordinal numbers and ordinal arithmetic will be considered known and admitted.

## Recommended courses

Mathematical logic (or any equivalent course on first order logic). Warning: without a good understanding of first order logic, students tend to get definitely lost sooner or later.

## Important concepts to start the course

• 1st order logic
• ordinal and cardinal arithmetics
• elements of proof theory
• very basic knowledge of model theory
• the compactness theorem
• Löwenheim-Skolem theorem
• the completeness theorem for 1st orderl ogic

## Learning Outcomes

By the end of the course, the student must be able to:

• Specify a model of ZFC
• Prove consistency results
• Develop a generic extension
• Argue by transfinite induction
• Decide whether ZFC proves its own consistency
• Formalize the axioms of ZF, AC, CH, DC
• Sketch an inner model
• Justify the axiom of foundation
• Formalize a model in which the reals are a countable union of countable sets
• Produce a model in which a countable set of pairs has no choice function
• Create a model in which the finite subsets of an infinite set is mapped onto the set of all its subsets

## Teaching methods

Ex cathedra lecture and exercises

## Expected student activities

• Attendance at lectures
• Solve the exercises

## Assessment methods

• Writen exam (3 hours)
• Dans le cas de l'art. 3 al. 5 du Règlement de section, l'enseignant décide de la forme de l'examen qu'il communique aux étudiants concernés

## Supervision

 Office hours No Assistants Yes Forum Yes

No

## Bibliography

1. Kenneth Kunen: Set theory, Springer, 1983
2. Lorenz Halbeisen: Combinatorial Set Theory, Springer 2018
3. Thomas Jech: Set theory, Springer 2006
4. Jean-Louis Krivine: Theorie des ensembles, 2007
5. Patrick Dehornoy: Logique et théorie des ensembles; Notes de cours, FIMFA ENS: http://www.math.unicaen.fr/~dehornoy/surveys.html
6. Yiannis Moschovakis: Notes on set theory, Springer 2006
7. Karel Hrbacek and Thomas Jech: Introduction to Set theory, (3d edition), 1999

## Notes/Handbook

Lecture notes on Moodle (423 pages).

## Dans les plans d'études

• Semestre: Printemps
• Forme de l'examen: Ecrit (session d'été)
• Matière examinée: Set theory
• Cours: 2 Heure(s) hebdo x 14 semaines
• Exercices: 2 Heure(s) hebdo x 14 semaines
• Semestre: Printemps
• Forme de l'examen: Ecrit (session d'été)
• Matière examinée: Set theory
• Cours: 2 Heure(s) hebdo x 14 semaines
• Exercices: 2 Heure(s) hebdo x 14 semaines
• Semestre: Printemps
• Forme de l'examen: Ecrit (session d'été)
• Matière examinée: Set theory
• Cours: 2 Heure(s) hebdo x 14 semaines
• Exercices: 2 Heure(s) hebdo x 14 semaines

## Semaine de référence

 Lu Ma Me Je Ve 8-9 CM012 9-10 10-11 CM012 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22

Mercredi, 8h - 10h: Cours CM012

Mercredi, 10h - 12h: Exercice, TP CM012

## Cours connexes

Résultats de graphsearch.epfl.ch.