PHYS-454 / 4 crédits

Enseignant: Brantut Jean-Philippe

Langue: Anglais


Summary

This lecture describes advanced developments and applications of quantum optics. It emphasizes the connection with ongoing research, and with the fast growing field of quantum technologies. The topics cover some aspects of quantum information processing, quantum sensing and quantum simulation.

Content

Keywords

Quantum technology, quantum computing, quantum simulation, quantum optics, laser cooling, quantum measurement, quantum electrodynamics, quantum devices

Learning Prerequisites

Required courses

Good understanding of basic quantum mechanics

Quantum Electrodynamics and quantum optics (Fall semester)

Recommended courses

Solid state physics III, Optique III, Statistical physics IV

Important concepts to start the course

The two-level system and harmonic oscillator in quantum mechanics, unitary transformations

Learning Outcomes

By the end of the course, the student must be able to:

  • Master the calculational techniques
  • Read and understand the scientific litterature in quantum optics and quantum information

Teaching methods

Ex-cathaedra, exercise classes. Mini-conference with student presentations

Expected student activities

Weekly problem sheet solving, paper reading and presentation

Assessment methods

Oral examination

Resources

Bibliography

For a review of the basics of quantum optics

  • Grynberg, Aspect and Fabre, Introduction to Quantum Optics

Core litterature for the course

  • Haroche, Raimond, Exploring the quantum
  • Chuang, Nielsen, Quantum Computation and Quantum Information
  • Cohen-Tannoudji, Guéry-Odelin, Advances in Atomic Physics

Further bibliographic elements on specific topics during the lectures and as exercises.

Ressources en bibliothèque

Prerequisite for

Specialization and Master projects in quantum optics, ultra-cold atoms, cavity quantum-electrodynamics

Dans les plans d'études

  • Semestre: Printemps
  • Forme de l'examen: Oral (session d'été)
  • Matière examinée: Quantum optics and quantum information
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Oral (session d'été)
  • Matière examinée: Quantum optics and quantum information
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Oral (session d'été)
  • Matière examinée: Quantum optics and quantum information
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Oral (session d'été)
  • Matière examinée: Quantum optics and quantum information
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Oral (session d'été)
  • Matière examinée: Quantum optics and quantum information
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Oral (session d'été)
  • Matière examinée: Quantum optics and quantum information
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Forme de l'examen: Oral (session d'été)
  • Matière examinée: Quantum optics and quantum information
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Oral (session d'été)
  • Matière examinée: Quantum optics and quantum information
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Forme de l'examen: Oral (session d'été)
  • Matière examinée: Quantum optics and quantum information
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines

Semaine de référence

 LuMaMeJeVe
8-9     
9-10     
10-11     
11-12     
12-13     
13-14     
14-15     
15-16     
16-17     
17-18     
18-19     
19-20     
20-21     
21-22