COM-309 / 4 crédits

Enseignant: Macris Nicolas

Langue: Anglais


Summary

Information is processed in physical devices. In the quantum regime the concept of classical bit is replaced by the quantum bit. We introduce quantum principles, and then quantum communications, key distribution, quantum entropy, and spin dynamics. No prior knowledge of quantum physics is required.

Content

Keywords

Polarization, spin, measurement, quantum bit, entanglement, key distribution, teleportaion, dense coding, Von Neumann entropy, spin dynamics.

Learning Prerequisites

Required courses

Linear algebra, basic probability.

Recommended courses

Basic physics classes: classical mechanics, waves.

Important concepts to start the course

Vectors, matrices, eigenvalues, eigenvectors, projectors, inner product, algebraic manipulation of complex numbers, discrete probability distribution.

 

Learning Outcomes

By the end of the course, the student must be able to:

  • Describe principles of quantum physics
  • Illustrate quantum bits with photon polarization and spin
  • Explain basic communication protocols like key distribution, dense coding, teleportation
  • Describe how to manipulate qubits with magnetic fields
  • Define quantum entropies and list basic properties
  • Use IBM Q NISQ devices

Teaching methods

Ex-Cathedra lectures, exercise session, practical implementationns typically with IBM Q machines.

Expected student activities

Participation in class, homeworks, hands-on exercises on IBM-Q.

Assessment methods

miniprojet, graded homeworks, final written exam

Supervision

Office hours No
Assistants Yes
Forum Yes
Others Assistants are in exercise session.

Resources

Virtual desktop infrastructure (VDI)

No

Bibliography

David Mermin, Quantum computer science, An introduction, Cambridge university press 2000. Written for computer science students with no knowledge of physics.

Michel Le Bellac, A short introduction to quantum information and quantum computation,
Cambridge University Press. A pedagogic book with an elementary introduction to the physics of the subject.

Neil Gershenfeld. The physics of information technology. Cambridge University Press. On basic information technologies useful in computer science, classical communications and quantum aspects.

Ressources en bibliothèque

Notes/Handbook

Yes on web site

Websites

Dans les plans d'études

  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Quantum information processing
  • Cours: 3 Heure(s) hebdo x 14 semaines
  • Exercices: 1 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Quantum information processing
  • Cours: 3 Heure(s) hebdo x 14 semaines
  • Exercices: 1 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Quantum information processing
  • Cours: 3 Heure(s) hebdo x 14 semaines
  • Exercices: 1 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Quantum information processing
  • Cours: 3 Heure(s) hebdo x 14 semaines
  • Exercices: 1 Heure(s) hebdo x 14 semaines

Semaine de référence

 LuMaMeJeVe
8-9  INF1  
9-10    
10-11     
11-12     
12-13     
13-14     
14-15     
15-16   ELD020 
16-17   ELD020 
17-18     
18-19     
19-20     
20-21     
21-22     

Mercredi, 8h - 10h: Cours INF1

Jeudi, 15h - 16h: Cours ELD020

Jeudi, 16h - 17h: Exercice, TP ELD020