Quantum field theory I
Summary
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.
Content
1. Introduction: Fundamental motivations for quantum field theory, Natural units of measure, Overview on the Standard Model of particle physics.
2. Classical Field Theory: Lagrangian and Hamiltonian formulation.
3. Symmetry Principles: Elements of group theory, Lie groups, Lie Algebras, group representations. The Lorentz and Poincaré groups with their representations on fields. Noether theorem: conserved currents, conserved charges and their role as generators of the group. The conserved charges of the Poincarè group.
4. Canonical quantization of real and complex scalar fields. Creation and annihilation operators. Fock space. Bose statistics. Heisenberg picture field. Realization of symmetries in the quantum theory.
5. Spinorial representations of the Lorentz group. Covariant wave equations and the resulting Weyl, Majorana and Dirac spinors. Plane wave solutions of the Dirac equation. Chirality and helicity. Quantization of the Dirac field. Anticommutation relations and Fermi statistics.
6. Unitary representations of the Poincaré group: Casimir invariants, massive and massless representations.
Learning Prerequisites
Required courses
Classical Electrodynamics, Quantum Mechanics I and II, Analytical Mechanics, Mathematical Methods
Recommended courses
General Relativity and Quantum Mechanics III warmly recommended.
Learning Outcomes
By the end of the course, the student must be able to:
- Expound the theory and its phenomenological consequences
- Formalize and solve the problems
Transversal skills
- Use a work methodology appropriate to the task.
Teaching methods
3 hours ex-cathedra
2 hours exercises
Assessment methods
Oral exam, based on one theoretical question and one exercise picked through a random choice. The candidate is allowed 1 hour to prepare and 20 minutes to present and discuss the handwritten results.
Resources
Bibliography
- "An introduction to quantum field theory / Michael E. Peskin, Daniel V. Schroeder". Année:1995. ISBN:0-201-50397-2
- "The quantum theory of fields / Steven Weinberg". Année:2005. ISBN:978-0-521-67053-1
- "Quantum field theory / Claude Itzykson, Jean-Bernard Zuber". Année:1980. ISBN:0-07-032071-3
- "Relativistic quantum mechanics / James D. Bjorken, Sidney D. Drell". Année:1964
- "A modern introduction to quantum field theory / Michele Maggiore". Année:2010. ISBN:978-0-19-852074-0
Ressources en bibliothèque
- Quantum Field Theory / Itzykson
- An Introduction to Quantum Field Theory / Peskin
- Relativistic Quantum Mechanics / Drell
- A Modern Introduction to Quantum Field Theory / Maggiore
- The Quantum Theory of Fields / Weinberg
Notes/Handbook
Lecture Notes for QFT-I and QFT-II
Websites
Moodle Link
Prerequisite for
Recommended for Theoretical Physics and for Particle Physics
Dans les plans d'études
- Semestre: Automne
- Forme de l'examen: Ecrit (session d'hiver)
- Matière examinée: Quantum field theory I
- Cours: 3 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Automne
- Forme de l'examen: Ecrit (session d'hiver)
- Matière examinée: Quantum field theory I
- Cours: 3 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Automne
- Forme de l'examen: Ecrit (session d'hiver)
- Matière examinée: Quantum field theory I
- Cours: 3 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
- Semestre: Automne
- Forme de l'examen: Ecrit (session d'hiver)
- Matière examinée: Quantum field theory I
- Cours: 3 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Type: optionnel
Semaine de référence
Lu | Ma | Me | Je | Ve | |
8-9 | |||||
9-10 | |||||
10-11 | |||||
11-12 | |||||
12-13 | |||||
13-14 | |||||
14-15 | |||||
15-16 | |||||
16-17 | |||||
17-18 | |||||
18-19 | |||||
19-20 | |||||
20-21 | |||||
21-22 |