- français
- English
Fiches de cours
P-adic numbers and applications
MATH-494
Enseignant(s) :
Wyss Dimitri StelioLangue:
English
Summary
P-adic numbers are a number theoretic analogue of the real numbers, which interpolate between arithmetics, analysis and geometry. In this course we study their basic properties and give various applications, notably we will prove rationality of the Weil Zeta function.Content
- Construction and arithmetics of p-adics
- Galois theory and the p-adic complex numbers
- p-adic analysis
- Zeta functions and rationality
Learning Outcomes
By the end of the course, the student must be able to:- understand the construction and basic theory of p-adic numbers, as well as being able to do calculations involving them.
Teaching methods
course ex-cathedra and exercises
Assessment methods
oral
Dans le cas de l¿art. 3 al. 5 du Règlement de section, l¿enseignant décide de la forme de l¿examen qu¿il communique aux étudiants concernés.
Dans les plans d'études
- Mathématiques - master, 2019-2020, Master semestre 2
- SemestrePrintemps
- Forme de l'examenOral
- Crédits
5 - Matière examinée
P-adic numbers and applications - Cours
2 Heure(s) hebdo x 14 semaines - Exercices
2 Heure(s) hebdo x 14 semaines
- Semestre
Semaine de référence
Lu | Ma | Me | Je | Ve | |
---|---|---|---|---|---|
8-9 | |||||
9-10 | |||||
10-11 | |||||
11-12 | |||||
12-13 | |||||
13-14 | |||||
14-15 | |||||
15-16 | |||||
16-17 | |||||
17-18 | |||||
18-19 | |||||
19-20 | |||||
20-21 | |||||
21-22 |
En construction
Cours
Exercice, TP
Projet, autre
légende
- Semestre d'automne
- Session d'hiver
- Semestre de printemps
- Session d'été
- Cours en français
- Cours en anglais
- Cours en allemand