MATH-494 / 5 crédits

Enseignant: Wyss Dimitri Stelio

Langue: Anglais


Summary

P-adic numbers are a number theoretic analogue of the real numbers, which interpolate between arithmetics, analysis and geometry. In this course we study their basic properties and give various applications, notably we will prove rationality of the Weil Zeta function.

Content

Learning Prerequisites

Recommended courses

 

  • Rings and modules
  • Galois theory
  • Introduction to differentiable manifolds

 

Learning Outcomes

By the end of the course, the student must be able to:

  • Demonstrate an understanding of the construction and basic theory of p-adic numbers, as well as being able to do calculations involving them.

Teaching methods

course ex-cathedra and exercises

Assessment methods

oral

Dans le cas de l'art. 3 al. 5 du Règlement de section, l'enseignant décide de la forme de l'examen qu'il communique aux étudiants concernés.

Dans les plans d'études

  • Semestre: Printemps
  • Forme de l'examen: Oral (session d'été)
  • Matière examinée: Topics in arithmetic geometry
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Oral (session d'été)
  • Matière examinée: Topics in arithmetic geometry
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Oral (session d'été)
  • Matière examinée: Topics in arithmetic geometry
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines

Semaine de référence

 LuMaMeJeVe
8-9     
9-10     
10-11     
11-12     
12-13     
13-14     
14-15     
15-16     
16-17     
17-18     
18-19     
19-20     
20-21     
21-22