MICRO-523 / 3 crédits

Enseignant: Bruschini Claudio

Langue: Anglais


Summary

Students analyse the fundamental characteristics of optical detectors, their architectures, selected applications and case studies. Photoemissive devices, photodiodes, infrared and single-photon detectors are studied. CCD, CMOS and SPAD cameras are analysed in detail, including advanced systems.

Content

  • Introduction: Electromagnetic radiation, radiometric quantities, interaction of light with matter, classification of detectors, noise sources, detector figures of merit.
  • Optical methods: selected examples: Synchronous detection and interferometers, position sensors, 3D imaging, Fourier optics and microscopy, superresolution microscopy techniques.
  • Photoemissive detectors: External photoeffect, vacuum photodiodes, photomultipliers, microchannel plates, applications.
  • Photodiodes: basic principles and structures, avalanche photodiodes, noise sources, ultra-fast photodiodes.
  • CCD cameras: Charge Coupled Devices (CCD): CCD principles and building blocks, CCD charge transport and image sensor architectures.
  • CMOS cameras: Photocharge detection, photodiodes in CMOS, array sensor architectures, noise in photodetection systems, APS (Active Pixel Sensor), HDR (High Dynamic Range) imaging. Specialty and advanced CMOS cameras (3D-stacking, BSI vs. FSI). On-chip optics and technology-related aspects.
  • Infrared detectors: InGaAs/InP heterojunctions, basic principles, metrology.
  • Single-photon avalanche diodes (SPADs): SPAD basic principles, metrology, silicon photomultipliers (SiPMs) vs. SPAD arrays, imagers. Selected use cases (time-resolved imaging, commercial systems & LIDAR, biophotonics & microscopy). Advanced SPAD cameras.
  • Single photon detection: PMTs and photon counting, intensified cameras, hybrid detectors, electron-multiplying CCDs, low-noise CMOS imagers.

Keywords

Photodetectors, photodiodes, CCD, CMOS and SPAD cameras, single-photon detection, metrology, applications.

Learning Prerequisites

Required courses

Bachelor in microengineering or in electrical and electronic engineering.

Recommended courses

"Physique générale : électromagnétisme", "Physique des composants semiconducteurs", "Electronique I et II", and "Capteurs".

Important concepts to start the course

Semiconductor physics, diodes and transistors, electronic amplifiers, optical lenses, micro-fabricated sensors.

Learning Outcomes

  • Analyze the basics characteristics and the principles used in optical sensors.
  • Develop the physical models for different photodetectors
  • Formulate fundamental equations describing the behavior of optical detectors
  • Optimize the photosensitive pixel.
  • Design cameras adapted to different optical applications
  • Interpret the datasheets of commercial optical sensors
  • Solve rapidly and efficiently problems related to optical detectors

Transversal skills

  • Summarize an article or a technical report.
  • Communicate effectively with professionals from other disciplines.
  • Demonstrate the capacity for critical thinking

Teaching methods

Ex-cathedra courses and exercises

Course will be taught in English, the scripts will contain explanations in English and French

Expected student activities

  • Regular attendance to lectures
  • Resolution of exercises as homework prior to the session
  • Resolution of "Take-home Messages" questions

Assessment methods

Oral exam during the exam session with time for preparation followed by interactive discussion with teacher (100% of final grade). Cheat sheet allowed, no other material.

Supervision

Office hours Yes
Assistants Yes
Forum No
Others Students can directly contact the teacher at any time.

Resources

Bibliography

Electronic books accessible by VPN:

Ressources en bibliothèque

Moodle Link

Dans les plans d'études

  • Semestre: Automne
  • Forme de l'examen: Oral (session d'hiver)
  • Matière examinée: Optical detectors
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 1 Heure(s) hebdo x 14 semaines
  • Type: optionnel
  • Semestre: Automne
  • Forme de l'examen: Oral (session d'hiver)
  • Matière examinée: Optical detectors
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 1 Heure(s) hebdo x 14 semaines
  • Type: optionnel
  • Semestre: Automne
  • Forme de l'examen: Oral (session d'hiver)
  • Matière examinée: Optical detectors
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 1 Heure(s) hebdo x 14 semaines
  • Type: optionnel
  • Semestre: Automne
  • Forme de l'examen: Oral (session d'hiver)
  • Matière examinée: Optical detectors
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 1 Heure(s) hebdo x 14 semaines
  • Type: optionnel
  • Semestre: Automne
  • Forme de l'examen: Oral (session d'hiver)
  • Matière examinée: Optical detectors
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 1 Heure(s) hebdo x 14 semaines
  • Type: optionnel
  • Semestre: Automne
  • Forme de l'examen: Oral (session d'hiver)
  • Matière examinée: Optical detectors
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 1 Heure(s) hebdo x 14 semaines
  • Type: optionnel
  • Semestre: Automne
  • Forme de l'examen: Oral (session d'hiver)
  • Matière examinée: Optical detectors
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 1 Heure(s) hebdo x 14 semaines
  • Type: optionnel
  • Semestre: Automne
  • Forme de l'examen: Oral (session d'hiver)
  • Matière examinée: Optical detectors
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 1 Heure(s) hebdo x 14 semaines
  • Type: optionnel

Semaine de référence

Jeudi, 13h - 15h: Cours INM10

Jeudi, 15h - 16h: Exercice, TP INM10

Cours connexes

Résultats de graphsearch.epfl.ch.