MATH-489 / 5 crédits

Enseignant: Jetchev Dimitar Petkov

Langue: Anglais


Summary

The goal of the course is to introduce basic notions from public key cryptography (PKC) as well as basic number-theoretic methods and algorithms for cryptanalysis of protocols and schemes based on PKC.

Content

Keywords

public key cryptography, key exchange, digital signatures, zero knowledge proofs, RSA, ElGamal, integer factorization, index calculus, elliptic curve cryptography, lattice-based cryptography

Learning Prerequisites

Recommended courses

Some knowledge of abstract algebra (groups, rings and fields) is desirable, but not mandatory. Knowledge of basic algorithms is a plus.

Teaching methods

lectures, exercises, additional references 

Assessment methods

Homework assignments: Weekly problem sets focusing on number-theoretic and complexity-theoretic aspects. These will be complemented by programming exercises in SAGE which is a Python-based computer algebra system. No prior experience with SAGE or Python is required. A subset of the homework will be handed in and graded, counting for 40% of the final grade.

The written final exam counts for 60% of the final grade. There will be a mock midterm exam not to be part of the final grade. The final exam will test theoretical understanding as well as understanding of the algorithms and protocols. The exam will include no SAGE programming exercises. If needed, algorithms could be presented with pseudo-code. The exact final exam format will be adapted to the epidemiological situation and resulting guidelines.

Dans les plans d'études

  • Semestre: Printemps
  • Forme de l'examen: Ecrit (session d'été)
  • Matière examinée: Number theory in cryptography
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Ecrit (session d'été)
  • Matière examinée: Number theory in cryptography
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Ecrit (session d'été)
  • Matière examinée: Number theory in cryptography
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Ecrit (session d'été)
  • Matière examinée: Number theory in cryptography
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Ecrit (session d'été)
  • Matière examinée: Number theory in cryptography
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Ecrit (session d'été)
  • Matière examinée: Number theory in cryptography
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Ecrit (session d'été)
  • Matière examinée: Number theory in cryptography
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Ecrit (session d'été)
  • Matière examinée: Number theory in cryptography
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Ecrit (session d'été)
  • Matière examinée: Number theory in cryptography
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines

Semaine de référence

 LuMaMeJeVe
8-9     
9-10     
10-11     
11-12     
12-13     
13-14     
14-15     
15-16     
16-17     
17-18     
18-19     
19-20     
20-21     
21-22