PHYS-470 / 4 crédits

Enseignant:

Langue: Anglais

Remark: pas donné en 2023-24


Summary

This course provides the fundamental knowledge and theoretical tools needed to treat nonlinear optical interactions, covering both classical and quantum theory of nonlinear optics. It presents applications such as nonclassical state generation and coherent frequency conversion.

Content

Keywords

Nonlinear optics, quantum optics, electromagnetism, electrodynamics, spectroscopy, quantum technology, lasers, oscillators, crystals, molecules, nanostructures, quantum correlations, entanglement, photonic integrated circuits, waveguides, optical cavities, plasmonics, photonics

Learning Prerequisites

Recommended courses

A solid background in the following areas is highly recommended: Classical Electromagnetism and Electrodynamics (Maxwell equations, light-matter interaction), Wave mechanics, Fundamentals of Optics.

 

Important concepts to start the course

Classical Electromagnetism and Electrodynamics (Maxwell equations, light-matter interaction), Wave mechanics, Fundamentals of Optics.

Learning Outcomes

By the end of the course, the student must be able to:

  • Define the different types of nonlinear interactions of light with a medium
  • Describe the macroscopic manifestation and microscopic origin of nonlinear susceptibility
  • Model wave propagation in linear and nonlinear media, in waveguides and low-dimensional geometries
  • Predict the efficiency of different nonlinear effects in different geometries
  • Explain how to derive a quantum theory of nonlinear optics
  • Develop models of nonclassical state generation based on nonlinear optics

Transversal skills

  • Use a work methodology appropriate to the task.
  • Demonstrate a capacity for creativity.
  • Take feedback (critique) and respond in an appropriate manner.
  • Use both general and domain specific IT resources and tools
  • Continue to work through difficulties or initial failure to find optimal solutions.
  • Make an oral presentation.
  • Summarize an article or a technical report.

Teaching methods

The course will be interactive, with an alternance of blackboard and slide lecturing, hands-on student exercises, questions and discussions. Active participation is expected.

Research seminars by external experts will establish a closer connection to contemporary research and illustrate the concepts seen in the course.

 

Expected student activities

Self-study before/after the lecture, active participation, asking questions, solving exercises, studying and presenting research papers

 

Assessment methods

Active participation during the semester including an oral presentation on a research topic (30%); final oral exam (70%)

Supervision

Office hours Yes
Assistants Yes
Forum Yes

Resources

Virtual desktop infrastructure (VDI)

No

Bibliography

  • P. N. Butcher and D. Cotter, The elements of nonlinear optics
  • Robert Boyd: Nonlinear Optics
  • François Hache: Optique Non Linéaire
  • G Grynberg, A Aspect and C Fabre, Introduction to Quantum Optics
  • J. D. Jackson, Classical electrodynamics
  • J. Vanderlinde, Classical Electromagnetic Theory
  • B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics

Ressources en bibliothèque

Notes/Handbook

Hand-written lecture notes will be provided

Moodle Link

Dans les plans d'études

  • Semestre: Automne
  • Forme de l'examen: Oral (session d'hiver)
  • Matière examinée: Nonlinear optics for quantum technologies
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Oral (session d'hiver)
  • Matière examinée: Nonlinear optics for quantum technologies
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Oral (session d'hiver)
  • Matière examinée: Nonlinear optics for quantum technologies
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Oral (session d'hiver)
  • Matière examinée: Nonlinear optics for quantum technologies
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Oral (session d'hiver)
  • Matière examinée: Nonlinear optics for quantum technologies
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Oral (session d'hiver)
  • Matière examinée: Nonlinear optics for quantum technologies
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Oral (session d'hiver)
  • Matière examinée: Nonlinear optics for quantum technologies
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Oral (session d'hiver)
  • Matière examinée: Nonlinear optics for quantum technologies
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Oral (session d'hiver)
  • Matière examinée: Nonlinear optics for quantum technologies
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Forme de l'examen: Oral (session d'hiver)
  • Matière examinée: Nonlinear optics for quantum technologies
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Oral (session d'hiver)
  • Matière examinée: Nonlinear optics for quantum technologies
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines

Semaine de référence

 LuMaMeJeVe
8-9     
9-10     
10-11     
11-12     
12-13     
13-14     
14-15     
15-16     
16-17     
17-18     
18-19     
19-20     
20-21     
21-22     

Cours connexes

Résultats de graphsearch.epfl.ch.