- français
- English
Fiches de cours
Machine learning
CS-433
Enseignant(s) :
Flammarion Nicolas Henri BernardJaggi Martin
Langue:
English
Summary
Machine learning and data analysis are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analyzed and practically implemented.Content
- Basic regression and classification concepts and methods: Linear models, overfitting, linear regression, Ridge regression, logistic regression, and k-NN.
- Fundamental concepts: cost-functions and optimization, cross-validation and bias-variance trade-off, curse of dimensionality.
- Unsupervised learning: k-Means Clustering, Gaussian mixture models and the EM algorithm.
- Dimensionality reduction: PCA and matrix factorization, word embeddings
- Advanced methods: generalized linear models, SVMs and Kernel methods, Neural networks and deep learning
Keywords
- Machine learning, pattern recognition, deep learning, data mining, knowledge discovery, algorithms
Learning Prerequisites
Required courses
- Analysis I, II, III
- Linear Algebra
- Probability and Statistics (MATH-232)
- Algorithms (CS-250)
Recommended courses
- Introduction to differentiable optimization (MATH-265)
- Linear Models (MATH-341)
Important concepts to start the course
- Basic probability and statistics (conditional and joint distribution, independence, Bayes rule, random variables, expectation, mean, median, mode, central limit theorem)
- Basic linear algebra (matrix/vector multiplications, systems of linear equations, SVD)
- Multivariate calculus (derivative w.r.t. vector and matrix variables)
- Basic Programming Skills (labs will use Python)
Learning Outcomes
By the end of the course, the student must be able to:- Define the following basic machine learning problems: Regression, classification, clustering, dimensionality reduction, time-series
- Explain the main differences between them
- Implement algorithms for these machine learning models
- Optimize the main trade-offs such as overfitting, and computational cost vs accuracy
- Implement machine learning methods to real-world problems, and rigorously evaluate their performance using cross-validation. Experience common pitfalls and how to overcome them
- Explain and understand the fundamental theory presented for ML methods
Teaching methods
- Lectures
- Lab sessions
- Course Projects
Expected student activities
Students are expected to:
- attend lectures
- attend lab sessions and work on the weekly theory and coding exercises
- work on projects using the code developed during labs, in small groups
Assessment methods
- Written final exam
- Continuous control (Course projects)
Supervision
Office hours | Yes |
Assistants | Yes |
Forum | Yes |
Resources
Virtual desktop infrastructure (VDI)
No
Bibliography
- Christopher Bishop, Pattern Recognition and Machine Learning
- Kevin Murphy, Machine Learning: A Probabilistic Perspective
- Shai Shalev-Shwartz, Shai Ben-David, Understanding Machine Learning
- Michael Nielsen, Neural Networks and Deep Learning
- (Jerome Friedman, Robert Tibshirani, Trevor Hastie, The elements of statistical learning : data mining, inference, and prediction)
Ressources en bibliothèque
- Linear algebra and learning from data
- The elements of statistical learning : data mining, inference, and prediction / Friedman
- Pattern Recognition and Machine Learning / Bishop
- Neural Networks and Deep Learning / Nielsen
- Machine Learning: A Probabilistic Perspective / Murphy
- Understanding Machine Learning / Shalev-Shwartz
Notes/Handbook
https://github.com/epfml/ML_course
Websites
Dans les plans d'études
- SemestreAutomne
- Forme de l'examenEcrit
- Crédits
7 - Matière examinée
Machine learning - Cours
4 Heure(s) hebdo x 14 semaines - Exercices
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestreAutomne
- Forme de l'examenEcrit
- Crédits
7 - Matière examinée
Machine learning - Cours
4 Heure(s) hebdo x 14 semaines - Exercices
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestreAutomne
- Forme de l'examenEcrit
- Crédits
7 - Matière examinée
Machine learning - Cours
4 Heure(s) hebdo x 14 semaines - Exercices
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestreAutomne
- Forme de l'examenEcrit
- Crédits
7 - Matière examinée
Machine learning - Cours
4 Heure(s) hebdo x 14 semaines - Exercices
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestreAutomne
- Forme de l'examenEcrit
- Crédits
7 - Matière examinée
Machine learning - Cours
4 Heure(s) hebdo x 14 semaines - Exercices
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestreAutomne
- Forme de l'examenEcrit
- Crédits
7 - Matière examinée
Machine learning - Cours
4 Heure(s) hebdo x 14 semaines - Exercices
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestreAutomne
- Forme de l'examenEcrit
- Crédits
7 - Matière examinée
Machine learning - Cours
4 Heure(s) hebdo x 14 semaines - Exercices
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestreAutomne
- Forme de l'examenEcrit
- Crédits
7 - Matière examinée
Machine learning - Cours
4 Heure(s) hebdo x 14 semaines - Exercices
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestreAutomne
- Forme de l'examenEcrit
- Crédits
7 - Matière examinée
Machine learning - Cours
4 Heure(s) hebdo x 14 semaines - Exercices
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestreAutomne
- Forme de l'examenEcrit
- Crédits
7 - Matière examinée
Machine learning - Cours
4 Heure(s) hebdo x 14 semaines - Exercices
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestreAutomne
- Forme de l'examenEcrit
- Crédits
7 - Matière examinée
Machine learning - Cours
4 Heure(s) hebdo x 14 semaines - Exercices
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestreAutomne
- Forme de l'examenEcrit
- Crédits
7 - Matière examinée
Machine learning - Cours
4 Heure(s) hebdo x 14 semaines - Exercices
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestreAutomne
- Forme de l'examenEcrit
- Crédits
7 - Matière examinée
Machine learning - Cours
4 Heure(s) hebdo x 14 semaines - Exercices
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestreAutomne
- Forme de l'examenEcrit
- Crédits
7 - Matière examinée
Machine learning - Cours
4 Heure(s) hebdo x 14 semaines - Exercices
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestreAutomne
- Forme de l'examenEcrit
- Crédits
7 - Matière examinée
Machine learning - Cours
4 Heure(s) hebdo x 14 semaines - Exercices
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestreAutomne
- Forme de l'examenEcrit
- Crédits
7 - Matière examinée
Machine learning - Cours
4 Heure(s) hebdo x 14 semaines - Exercices
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestreAutomne
- Forme de l'examenEcrit
- Crédits
7 - Matière examinée
Machine learning - Cours
4 Heure(s) hebdo x 14 semaines - Exercices
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestreAutomne
- Forme de l'examenEcrit
- Crédits
7 - Matière examinée
Machine learning - Cours
4 Heure(s) hebdo x 14 semaines - Exercices
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestreAutomne
- Forme de l'examenEcrit
- Crédits
7 - Matière examinée
Machine learning - Cours
4 Heure(s) hebdo x 14 semaines - Exercices
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestreAutomne
- Forme de l'examenEcrit
- Crédits
7 - Matière examinée
Machine learning - Cours
4 Heure(s) hebdo x 14 semaines - Exercices
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestreAutomne
- Forme de l'examenEcrit
- Crédits
7 - Matière examinée
Machine learning - Cours
4 Heure(s) hebdo x 14 semaines - Exercices
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestreAutomne
- Forme de l'examenEcrit
- Crédits
7 - Matière examinée
Machine learning - Cours
4 Heure(s) hebdo x 14 semaines - Exercices
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestreAutomne
- Forme de l'examenEcrit
- Crédits
7 - Matière examinée
Machine learning - Cours
4 Heure(s) hebdo x 14 semaines - Exercices
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestreAutomne
- Forme de l'examenEcrit
- Crédits
7 - Matière examinée
Machine learning - Cours
4 Heure(s) hebdo x 14 semaines - Exercices
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestreAutomne
- Forme de l'examenEcrit
- Crédits
7 - Matière examinée
Machine learning - Cours
4 Heure(s) hebdo x 14 semaines - Exercices
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestreAutomne
- Forme de l'examenEcrit
- Crédits
7 - Matière examinée
Machine learning - Cours
4 Heure(s) hebdo x 14 semaines - Exercices
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestreAutomne
- Forme de l'examenEcrit
- Crédits
7 - Matière examinée
Machine learning - Cours
4 Heure(s) hebdo x 14 semaines - Exercices
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestreAutomne
- Forme de l'examenEcrit
- Crédits
7 - Matière examinée
Machine learning - Cours
4 Heure(s) hebdo x 14 semaines - Exercices
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestreAutomne
- Forme de l'examenEcrit
- Crédits
7 - Matière examinée
Machine learning - Cours
4 Heure(s) hebdo x 14 semaines - Exercices
2 Heure(s) hebdo x 14 semaines
- Semestre
Semaine de référence
Lu | Ma | Me | Je | Ve | |
---|---|---|---|---|---|
8-9 | |||||
9-10 | |||||
10-11 | |||||
11-12 | |||||
12-13 | |||||
13-14 | |||||
14-15 | INF119 INF2 INJ218 INM202 INR219 | ||||
15-16 | |||||
16-17 | SG1 | ||||
17-18 | SG1 | ||||
18-19 | |||||
19-20 | |||||
20-21 | |||||
21-22 |
Cours
Exercice, TP
Projet, autre
légende
- Semestre d'automne
- Session d'hiver
- Semestre de printemps
- Session d'été
- Cours en français
- Cours en anglais
- Cours en allemand