CS-233(b) / 4 crédits

Enseignant: Fua Pascal

Langue: Anglais


Summary

Machine learning and data analysis are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analyzed and practically implemented.

Content

Keywords

Machine learning, classification, regression, algorithms

Learning Prerequisites

Required courses

Linear algebra

Important concepts to start the course

  • Basic linear algebra (matrix/vector multiplications, systems of linear equations, SVD).
  • Multivariate calculus (derivative w.r.t. vector and matrix variables).
  • Basic programming skills (labs will use Python).

Learning Outcomes

By the end of the course, the student must be able to:

  • Define the following basic machine learning problems : regression, classification, clustering, dimensionality reduction
  • Explain the main differences between them
  • Implement algorithms for these machine learning models
  • Optimize the main trade-offs such as overfitting, and computational cost vs accuracy
  • Implement machine-learning methods to real-world problems, and rigorously evaluate their performance using cross-validation. Experience common pitfalls and how to overcome them.

Teaching methods

  • Lectures
  • Lab sessions

Expected student activities

  • Attend lectures
  • Attend lab sessions and work on the weekly theory and coding exercises

Assessment methods

  • Continuous control (graded labs)
  • Written final exam

Supervision

Others Course website

Dans les plans d'études

  • Semestre: Printemps
  • Forme de l'examen: Ecrit (session d'été)
  • Matière examinée: Introduction to machine learning (BA4)
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Ecrit (session d'été)
  • Matière examinée: Introduction to machine learning (BA4)
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Ecrit (session d'été)
  • Matière examinée: Introduction to machine learning (BA4)
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Ecrit (session d'été)
  • Matière examinée: Introduction to machine learning (BA4)
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Ecrit (session d'été)
  • Matière examinée: Introduction to machine learning (BA4)
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Ecrit (session d'été)
  • Matière examinée: Introduction to machine learning (BA4)
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines

Semaine de référence

 LuMaMeJeVe
8-9 CM3   
9-10    
10-11 CE1100
CE1101
CE1103
   
11-12    
12-13     
13-14     
14-15     
15-16     
16-17     
17-18     
18-19     
19-20     
20-21     
21-22     

Mardi, 8h - 10h: Cours CM3

Mardi, 10h - 12h: Exercice, TP CE1100
CE1101
CE1103