MATH-436 / 5 crédits

Enseignant: Hess Bellwald Kathryn

Langue: Anglais


Summary

This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous examples of model categories and their applications in algebra and topology.

Content

Keywords

Abstract homotopy theory

Learning Prerequisites

Required courses

Second-year math courses, including Topology.

Recommended courses

  • Rings and modules
  • Algebraic topology

Important concepts to start the course

  • Necessary concept: homotopy of continuous maps
  • Recommended concept: chain homotopy of morphisms between chain complexes

Learning Outcomes

By the end of the course, the student must be able to:

  • Prove results in category theory involving (co)limits, adjunctions, and Kan extensions
  • Prove basic properties of model categories
  • Check the model category axioms in important examples
  • Apply transfer theorems to establish the existence of model category structures
  • Apply Bousfield localization to create model categories with desired weak equivalences
  • Compare different model category structures via Quillen pairs

Transversal skills

  • Demonstrate a capacity for creativity.
  • Demonstrate the capacity for critical thinking
  • Continue to work through difficulties or initial failure to find optimal solutions.

Teaching methods

Flipped class: pre-recorded lectures, active learning sessions with the instructor, exercise sessions with the assistant

Expected student activities

Handing in weekly exercises to be graded.

Assessment methods

Graded exercises

Oral exam

In the case of Article 3 paragraph 5 of the Section Regulations, the teacher decides on the form of the examination he communicates to the students concerned.

Supervision

Office hours No
Assistants Yes
Forum Yes

Resources

Bibliography

  • W.G. Dwyer and J. Spalinski, Homotopy theories and model categories, Handbook of Algebraic Topology, Elsevier, 1995, 73-126. (Article no. 75 here)

 

  • P.G. Goerss and J.F. Jardine, Simplicial Homotopy Theory, Progress in Mathematics 174, Birkhäuser Verlag, 1999.

 

  • M. Hovey, Model Categories, Mathematical Surveys and Monographs 63, American Mathematical Society, 1999.

 

 

 

Ressources en bibliothèque

Moodle Link

Dans les plans d'études

  • Semestre: Printemps
  • Forme de l'examen: Ecrit (session d'été)
  • Matière examinée: Homotopical algebra
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Ecrit (session d'été)
  • Matière examinée: Homotopical algebra
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Ecrit (session d'été)
  • Matière examinée: Homotopical algebra
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines

Semaine de référence

 LuMaMeJeVe
8-9     
9-10     
10-11     
11-12     
12-13     
13-14     
14-15     
15-16     
16-17     
17-18     
18-19     
19-20     
20-21     
21-22