EE-411 / 4 crédits

Enseignant: Krzakala Florent Gérard

Langue: Anglais

## Summary

This is an introductory course in the theory of statistics, inference, and machine learning, with an emphasis on theoretical understanding & practical exercises. The course will combine, and alternate, between mathematical theoretical foundations and practical computational aspects in python.

## Content

The topics will be chosen from the following basic outline:

• Statistical inference: Estimators, Bias-Variance, Consistency, Efficiency, Maximum likelihood, Fisher Information.
• Bayesian inference, Priors, A posteriori estimation, Expectation-Minimization.
• Supervised learning : Linear Regression, Ridge, Lasso, Sparse problems, high-dimensional Data, Kernel methods, Boosting, Bagging. K-NN, Support Vector Machines, logistic regression, Optimal Margin Classifier
• Statistical learning theory: VC Bounds and Uniform convergence, Implicit regularisation, Double-descent
• Unsupervised learning : Mixture Models, PCA & Kernel PCA, k-means
• Deep learning: multi-layer nets, convnets, auto-encoder, Gradient-descent algorithms
• Basics of Generative models & Reinforcement learning

## Keywords

Statisitics, Supervised and unsupervised learning

## Required courses

* Basic probability theory.

* Basic knowlegde of python programing

* Basic linear algebra, and calculus

## Recommended courses

Probability and statistics.

Basic optimization

## Important concepts to start the course

Students should be familiar with basic concepts of probability theory, calculus and linear algebra, and be familiar with python.

## Learning Outcomes

By the end of the course, the student must be able to:

• Formulate statistical models and apply them to statistical learning
• Apply machine learning technics to data science problems
• Solve concrete data science problems
• Explain and understand the fundamental principle of learning theory

## Assessment methods

* Homeworks during the lectures

* Final project,

## Dans les plans d'études

• Semestre: Automne
• Forme de l'examen: Pendant le semestre (session d'hiver)
• Matière examinée: Fundamentals of inference and learning
• Cours: 2 Heure(s) hebdo x 14 semaines
• Projet: 2 Heure(s) hebdo x 14 semaines
• Type: obligatoire
• Semestre: Automne
• Forme de l'examen: Pendant le semestre (session d'hiver)
• Matière examinée: Fundamentals of inference and learning
• Cours: 2 Heure(s) hebdo x 14 semaines
• Projet: 2 Heure(s) hebdo x 14 semaines
• Type: obligatoire

## Cours connexes

Résultats de graphsearch.epfl.ch.