Financial econometrics
Summary
This course aims to give an introduction to the application of machine learning to finance. These techniques gained popularity due to the limitations of traditional financial econometrics methods tackling big data. We will review and compare traditional methods and machine learning algorithms.
Content
1- Introduction to financial markets and financial time series
- Introduction to financial markets
- Some probabilistic tools to analyze financial time series
- Stylized facts of asset returns
2- Introduction to machine learning in finance
- Goals of machine learning
- Applications of machine learning
- Timeline of machine learning
- Main types of algorithms
3- Supervised learning
- Regression
- Classification
- Applications to asset pricing and forecasting
4- Time series models
- Brief review of ARMA processes
- Vector AutoRegressive processes
- Heteroskedastic volatility models
5- Unsupervised learning
- Clustering
- Factor analysis
- Applications to asset pricing and factor modelling
6- Introduction to Natural Language Processing
- Applications to finance
7- Neural Networks
- Feedforward networks
- Recurrent Neural Networks
8- Project presentations
Keywords
Econometrics, Machine Learning, Finance
Learning Prerequisites
Required courses
Econometrics
Recommended courses
Introduction to finance
Important concepts to start the course
Basic linear algebra.
Basic probalilistic and statistical concepts.
Learning Outcomes
By the end of the course, the student must be able to:
- Elaborate a prediction program
- Assess / Evaluate existing estimation and predicition methods
- Formulate new estimation and prediction methods
- Propose optimal methods for problems seen
- Optimize techniques / algorithms used
- Construct econometric models
- Implement financial econometrics traditional and machine learning algorithms
- Exploit information contained in data
Transversal skills
- Give feedback (critique) in an appropriate fashion.
- Demonstrate the capacity for critical thinking
- Use a work methodology appropriate to the task.
Teaching methods
Lectures and exercise sessions
Projects
Expected student activities
- Participate in lectures
- Participate in exercises sessions
- Solve the problem sets
- Work on a project and present outcomes
- Write a final exam
Assessment methods
(Project report+Project presentation+Exam)/3
Supervision
Assistants | Yes |
Resources
Bibliography
Hamilton, J.D.(1994):"Time Series Analysis" , Princeton Univertsity Press
Gourieroux C. and Monfort A.(1996):"Time Series and Dynamic Models" ,Cambridge University Press
Frank C. and Zakoian J.M.(2010) :"Garch Model"s ,Wiley
Gourieroux C. and Monfort A,(1996): "Statistics and Econometric Models" ,(2 vol.),Cambridge University Press
Bertholon H.,Monfort A. and Pegoraro F. (2008): "Econometric Asset Pricing Modelling",Journal of Financial Econometrics ,4,407-458
Dixon M. F, Halperin I. and Bilokon P. (2020): "Machine Learning in Finance", Springer
Ressources en bibliothèque
Prerequisite for
- Courses using statistical dynamic models
Dans les plans d'études
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Financial econometrics
- Cours: 3 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Financial econometrics
- Cours: 3 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Financial econometrics
- Cours: 3 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
Semaine de référence
Lu | Ma | Me | Je | Ve | |
8-9 | |||||
9-10 | EXTRANEF126 | ||||
10-11 | |||||
11-12 | |||||
12-13 | |||||
13-14 | EXTRANEF126 | ||||
14-15 | |||||
15-16 | |||||
16-17 | |||||
17-18 | |||||
18-19 | |||||
19-20 | |||||
20-21 | |||||
21-22 |
Légendes:
Cours
Exercice, TP
Projet, autre
Mercredi, 9h - 12h: Cours EXTRANEF126
Mercredi, 13h - 15h: Exercice, TP EXTRANEF126