MATH-478 / 5 crédits

Enseignant: Krieger Joachim

Langue: Anglais

Remark: pas donné en 2023-24


Summary

This course will give an introduction to some aspects of nonlinear dispersive partial differential equations. These are time evolution problems that arise in many contexts in physics, such as quantum mechanics, electrodynamics, fluid motion and relativity.

Content

The course is aimed to be self-contained, introducing the necessary technical tools along the way.

1. Introduction. What are dispersive equations? How do they arise?

2. Technical Background: Fourier Analysis & Sobolev Spaces

3. Linear Dispersive Equations

4. Semilinear Equations
4.1 Local Theory
4.2 Criticality and Scaling
4.3 Global Theory
4.4 Advanced Topics / More Technical Background

5. Quasilinear Equations
5.1 Method of Spacetime Resonances
5.2 Advanced Topics

Learning Prerequisites

Required courses

A solid foundation in analysis (including measure theory and functional analysis) is necessary. Advanced topics such as harmonic analysis would be helpful, but are by no means required.

Assessment methods

Active participation in the exercise sessions

Oral final examination

Dans le cas de l'art. 3 al. 5 du Règlement de section, l'enseignant décide de la forme de l'examen qu'il communique aux étudiants concernés.

Resources

Moodle Link

Dans les plans d'études

  • Semestre: Printemps
  • Forme de l'examen: Oral (session d'été)
  • Matière examinée: Dispersive PDEs
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Type: optionnel
  • Semestre: Printemps
  • Forme de l'examen: Oral (session d'été)
  • Matière examinée: Dispersive PDEs
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Type: optionnel
  • Semestre: Printemps
  • Forme de l'examen: Oral (session d'été)
  • Matière examinée: Dispersive PDEs
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Type: optionnel

Semaine de référence

Cours connexes

Résultats de graphsearch.epfl.ch.