MICRO-573 / 3 crédits

Enseignant(s): Borhani Navid, Psaltis Demetri

Langue: Anglais

Withdrawal: It is not allowed to withdraw from this subject after the registration deadline.


Summary

This course will focus on the practical implementation of artificial neural networks (ANN) using the open-source TensorFlow machine learning library developed by Google for Python.

Content

Keywords

Deep learning, TensorFlow, Artificial neural networks, Imaging

Learning Prerequisites

Required courses

Proficiency in Python, basic optics

Recommended courses

MICRO-421 Imaging Optics

Important concepts to start the course

Python familiarity, linear systems, basic optics

Learning Outcomes

By the end of the course, the student must be able to:

  • Implement
  • Choose
  • Demonstrate
  • Apply

Teaching methods

2 hours/week  lecture

1 hour/week interactive artificial neural network develoment for selected problems

 

Resources

Websites

Moodle Link

Dans les plans d'études

  • Semestre: Printemps
  • Forme de l'examen: Pendant le semestre (session d'été)
  • Matière examinée: Deep learning for optical imaging
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 1 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Pendant le semestre (session d'été)
  • Matière examinée: Deep learning for optical imaging
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 1 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Pendant le semestre (session d'été)
  • Matière examinée: Deep learning for optical imaging
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 1 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Pendant le semestre (session d'été)
  • Matière examinée: Deep learning for optical imaging
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 1 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Pendant le semestre (session d'été)
  • Matière examinée: Deep learning for optical imaging
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 1 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Pendant le semestre (session d'été)
  • Matière examinée: Deep learning for optical imaging
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 1 Heure(s) hebdo x 14 semaines
  • Forme de l'examen: Pendant le semestre (session d'été)
  • Matière examinée: Deep learning for optical imaging
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 1 Heure(s) hebdo x 14 semaines

Semaine de référence

 LuMaMeJeVe
8-9     
9-10     
10-11     
11-12     
12-13     
13-14     
14-15     
15-16     
16-17     
17-18     
18-19     
19-20     
20-21     
21-22