Deep learning for autonomous vehicles
Summary
Deep Learning (DL) is the subset of Machine learning reshaping the future of transportation and mobility. In this class, we will show how DL can be used to teach autonomous vehicles to detect objects, make predictions, and make decisions. (Fun fact: this summary is powered by DL)
Content
1. Introduction:
- Defining Autonomous Vehicles, Artificial Intelligence, Machine Learning, and Deep learning
- Overview of the 3 pillars of Autonomous Vehicles: Perception, Prediction, Planning
- Quick overview of sensing modalities
2. Deep learning for Perception (how to extract meaningful information from raw data?)
- Quick recap on the fundamentals of machine learning (fundamentals of regression and classification)
- Intro to deep learning (Neural Network, CNN, regularization techniques)
- State-of-the-art techniques (e.g., Self supervised learning, Vision Transformer)
3- Deep learning for Prediction
- Intro to Recurrent Neural Networks
- Learning to clone socially-accepted human behavior
- State-of-the-art techniques (e.g., Graph Neural Network, Transformer, Diffusion...)
3- Deep Learning for Planning
4- Beyond Deep Learning: role of ethics
- How to integrate ethical decisions?
Keywords
Deep Learning, Autonomous Vehicle, Artificial intelligence, Machine learning, Self-driving car, human-robot tandem race
Learning Outcomes
By the end of the course, the student must be able to:
- Define the fundamental steps behind an AI-driven system
- Design the building steps of an autonomous vehicle
- Implement an algorithm for each step
- Explain and understand the challenges and ethical impacts
Teaching methods
Ex cathedra
Assessment methods
- Lab projects (Individual): 30%
- Midterm (Individual): 30%
- Final project (in group): 40%
Dans les plans d'études
- Semestre: Printemps
- Forme de l'examen: Pendant le semestre (session d'été)
- Matière examinée: Deep learning for autonomous vehicles
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 4 Heure(s) hebdo x 14 semaines
- Semestre: Printemps
- Forme de l'examen: Pendant le semestre (session d'été)
- Matière examinée: Deep learning for autonomous vehicles
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 4 Heure(s) hebdo x 14 semaines
- Semestre: Printemps
- Forme de l'examen: Pendant le semestre (session d'été)
- Matière examinée: Deep learning for autonomous vehicles
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 4 Heure(s) hebdo x 14 semaines
- Semestre: Printemps
- Forme de l'examen: Pendant le semestre (session d'été)
- Matière examinée: Deep learning for autonomous vehicles
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 4 Heure(s) hebdo x 14 semaines
- Semestre: Printemps
- Forme de l'examen: Pendant le semestre (session d'été)
- Matière examinée: Deep learning for autonomous vehicles
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 4 Heure(s) hebdo x 14 semaines
- Semestre: Printemps
- Forme de l'examen: Pendant le semestre (session d'été)
- Matière examinée: Deep learning for autonomous vehicles
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 4 Heure(s) hebdo x 14 semaines
- Forme de l'examen: Pendant le semestre (session d'été)
- Matière examinée: Deep learning for autonomous vehicles
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 4 Heure(s) hebdo x 14 semaines
Semaine de référence
Lu | Ma | Me | Je | Ve | |
8-9 | |||||
9-10 | |||||
10-11 | |||||
11-12 | |||||
12-13 | |||||
13-14 | |||||
14-15 | |||||
15-16 | |||||
16-17 | |||||
17-18 | |||||
18-19 | |||||
19-20 | |||||
20-21 | |||||
21-22 |
Légendes:
Cours
Exercice, TP
Projet, autre