- français
- English
Fiches de cours
Data visualization
COM-480
Enseignant(s) :
Vuillon Laurent Gilles MarieLangue:
English
Summary
Understanding why and how to present complex data interactively in an effective manner has become a crucial skill for any data scientist. In this course, you will learn how to design, judge, build and present your own interactive data visualizations.Content
Tentative course schedule
Week 1: Introduction to Data visualization Web development
Week 2: Javascript
Week 3: More Javascript
Week 4: Data Data driven documents (D3.js)
Week 5: Interaction, filtering, aggregation (UI /UX). Advanced D3 / javascript libs
Week 6: Perception, cognition, color Marks and channels
Week 7: Designing visualizations (UI/UX) Project introduction Dos and don'ts for data-viz
Week 8: Maps (theory) Maps (practice)
Week 9: Text visualization
Week 10: Graphs
Week 11: Tabular data viz Music viz
Week 12: Introduction to scientific visualisation
Week 13: Storytelling with data / data journalism Creative coding
Week 14: Wrap-Up
Keywords
Data viz, visualization, data science
Learning Prerequisites
Required courses
CS-305 Software engineering (BA)
CS-250 Algorithms (BA)
CS-401 Applied data analysis (MA)
Recommended courses
EE-558 A Network Tour of Data Science (MA)
CS-486 Human computer interaction (MA)
CS-210 Functional programming (BA)
Important concepts to start the course
Being autonomous is a prerequisite, we don't offer office hours and we won't have enough teaching assistants (you've been warned!).
Knowledge of one of the following progrmaming language such as C++, Python, Scala.
Familiarity with web-development (you already have a blog, host a webiste). Experience with HTML5, Javascript is a strong plus for the course.
Learning Outcomes
By the end of the course, the student must be able to:- Judge visualization in a critical manner and suggest improvements.
- Design and implement visualizations from the idea to the final product according to human perception and cognition
- Know the common data-viz techniques for each data domain (multivariate data, networks, texts, cartography, etc) with their technical limitations
- Create interactive visualizations int he browser using HTM5 and Javascript
Transversal skills
- Communicate effectively, being understood, including across different languages and cultures.
- Negotiate effectively within the group.
- Resolve conflicts in ways that are productive for the task and the people concerned.
Teaching methods
Ex cathedra lectures, exercises, and group projects
Expected student activities
- Follow lectures
- Read lectures notes and textbooks
- Create an advanced data-viz in groups of 3.
- Answer questions assessing the evolution of the project.
- Create a 2min screencast presentation of the viz.
- Create a process book for the final data viz.
Assessment methods
- Data-viz (35%)
- Technical implementation (15%)
- Website, presentation, screencast (25%)
- Process book (25%)
Supervision
Office hours | No |
Assistants | No |
Forum | No |
Resources
Bibliography
Visualization Analysis and Design by Tamara Munzner, CRC Press (2014). Fee online version at EPFL.
Interactive Data Visualization for the Web by Scott Murray O'Reilly (2013) - D3 - Free online version.
Ressources en bibliothèque
Notes/Handbook
Lecture notes
Websites
Moodle Link
Dans les plans d'études
- SemestrePrintemps
- Forme de l'examenPendant le semestre
- Crédits
4 - Matière examinée
Data visualization - Cours
2 Heure(s) hebdo x 14 semaines - Projet
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestrePrintemps
- Forme de l'examenPendant le semestre
- Crédits
4 - Matière examinée
Data visualization - Cours
2 Heure(s) hebdo x 14 semaines - Projet
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestrePrintemps
- Forme de l'examenPendant le semestre
- Crédits
4 - Matière examinée
Data visualization - Cours
2 Heure(s) hebdo x 14 semaines - Projet
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestrePrintemps
- Forme de l'examenPendant le semestre
- Crédits
4 - Matière examinée
Data visualization - Cours
2 Heure(s) hebdo x 14 semaines - Projet
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestrePrintemps
- Forme de l'examenPendant le semestre
- Crédits
4 - Matière examinée
Data visualization - Cours
2 Heure(s) hebdo x 14 semaines - Projet
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestrePrintemps
- Forme de l'examenPendant le semestre
- Crédits
4 - Matière examinée
Data visualization - Cours
2 Heure(s) hebdo x 14 semaines - Projet
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestrePrintemps
- Forme de l'examenPendant le semestre
- Crédits
4 - Matière examinée
Data visualization - Cours
2 Heure(s) hebdo x 14 semaines - Projet
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestrePrintemps
- Forme de l'examenPendant le semestre
- Crédits
4 - Matière examinée
Data visualization - Cours
2 Heure(s) hebdo x 14 semaines - Projet
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestrePrintemps
- Forme de l'examenPendant le semestre
- Crédits
4 - Matière examinée
Data visualization - Cours
2 Heure(s) hebdo x 14 semaines - Projet
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestrePrintemps
- Forme de l'examenPendant le semestre
- Crédits
4 - Matière examinée
Data visualization - Cours
2 Heure(s) hebdo x 14 semaines - Projet
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestrePrintemps
- Forme de l'examenPendant le semestre
- Crédits
4 - Matière examinée
Data visualization - Cours
2 Heure(s) hebdo x 14 semaines - Projet
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestrePrintemps
- Forme de l'examenPendant le semestre
- Crédits
4 - Matière examinée
Data visualization - Cours
2 Heure(s) hebdo x 14 semaines - Projet
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestrePrintemps
- Forme de l'examenPendant le semestre
- Crédits
4 - Matière examinée
Data visualization - Cours
2 Heure(s) hebdo x 14 semaines - Projet
2 Heure(s) hebdo x 14 semaines
- Semestre
- SemestrePrintemps
- Forme de l'examenPendant le semestre
- Crédits
4 - Matière examinée
Data visualization - Cours
2 Heure(s) hebdo x 14 semaines - Projet
2 Heure(s) hebdo x 14 semaines
- Semestre
Semaine de référence
Lu | Ma | Me | Je | Ve | |
---|---|---|---|---|---|
8-9 | CO2 | ||||
9-10 | |||||
10-11 | |||||
11-12 | |||||
12-13 | |||||
13-14 | |||||
14-15 | |||||
15-16 | INR113 INR219 | ||||
16-17 | |||||
17-18 | |||||
18-19 | |||||
19-20 | |||||
20-21 | |||||
21-22 |
légende
- Semestre d'automne
- Session d'hiver
- Semestre de printemps
- Session d'été
- Cours en français
- Cours en anglais
- Cours en allemand