DH-500 / 4 crédits

Enseignant: Gatica-Perez Daniel

Langue: Anglais


Summary

The course integrates concepts from media studies, machine learning, multimedia, and network science to characterize social practices and analyze content in platforms like Twitter/X, Instagram, YouTube, and TikTok. Students will learn computational methods to understand phenomena in social media.

Content

 

The course will present a human-centered view of computational social media. It uses a multidisciplinary approach and integrates concepts from media studies, multimedia information systems, machine learning, and network science to present the socio-technical fundamentals needed to understand user motivations and behavior, and analyze content in platforms like Twitter/X, Instagram, YouTube, and TikTok. Students will become familiar with computational approaches for classification, discovery, and interpretation of phenomena in social media.

The content is organized around trends in social media, introducing computational models of general applicability.

1. Introduction. A brief history of social media. Networked individualism.

2. Friending. A human-centered review of social network research. Users, communities, and networks. Privacy and the real-name web.

3. Tweeting. From random chatter to worldwide pulse. Followers, hashtags, events, and network effects. Analyzing real-life phenomena on information networks. Misinformation in social media.

4. Shooting. Photo sharing and tagging. Media, user and community analysis enabled by photo sharing. Ephemeral social media.

5. Moving. Location-based social networks. Individual and network phenomena revealed by mobility data. Urban computing.

6. Watching. Social video as a media phenomenon. Multimodal techniques to analyze social video.

7. Crowdsourcing. Models to analyze crowdsourced tasks and workers. Uses of crowdsourcing in social media research. Crowdsourcing and social participation.

8. The Future. Social media from a global perspective. Effects of social media on society. Fairness, Accountability, Transparency, and Ethics in social media.

 

Assessment methods

Multiple methods during the semester: homeworks; paper presentation and group discussion, and group project.

Resources

Moodle Link

Dans les plans d'études

  • Semestre: Printemps
  • Forme de l'examen: Pendant le semestre (session d'été)
  • Matière examinée: Computational Social Media
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 1 Heure(s) hebdo x 14 semaines
  • Type: obligatoire
  • Semestre: Printemps
  • Forme de l'examen: Pendant le semestre (session d'été)
  • Matière examinée: Computational Social Media
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 1 Heure(s) hebdo x 14 semaines
  • Type: obligatoire
  • Semestre: Printemps
  • Forme de l'examen: Pendant le semestre (session d'été)
  • Matière examinée: Computational Social Media
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 1 Heure(s) hebdo x 14 semaines
  • Type: optionnel
  • Semestre: Printemps
  • Forme de l'examen: Pendant le semestre (session d'été)
  • Matière examinée: Computational Social Media
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 1 Heure(s) hebdo x 14 semaines
  • Type: optionnel
  • Forme de l'examen: Pendant le semestre (session d'été)
  • Matière examinée: Computational Social Media
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 1 Heure(s) hebdo x 14 semaines
  • Type: optionnel
  • Forme de l'examen: Pendant le semestre (session d'été)
  • Matière examinée: Computational Social Media
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 1 Heure(s) hebdo x 14 semaines
  • Type: optionnel
  • Forme de l'examen: Pendant le semestre (session d'été)
  • Matière examinée: Computational Social Media
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 1 Heure(s) hebdo x 14 semaines
  • Type: optionnel
  • Semestre: Printemps
  • Forme de l'examen: Pendant le semestre (session d'été)
  • Matière examinée: Computational Social Media
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 1 Heure(s) hebdo x 14 semaines
  • Type: optionnel

Semaine de référence

Cours connexes

Résultats de graphsearch.epfl.ch.