CS-413 / 5 crédits

Enseignant: Süsstrunk Sabine

Langue: Anglais


Summary

The students will gain the theoretical knowledge in computational photography, which allows recording and processing a richer visual experience than traditional digital imaging. They will also execute practical group projects to develop their own computational photography application.

Content

Keywords

Computational Photography, Coded Image Sensing, Non-classical image capture, Multi-Image & Sensor Fusion, Mobile Imaging, Machine Learning

Learning Prerequisites

Recommended courses

  • Introduction to Computer Vision.
  • Signal Processing for Communications.
  • Machine Learning.

Important concepts to start the course

  • Basic signal/image processing.
  • Basic computer vision.
  • Basic programming (Python, iOS, Android).

Learning Outcomes

By the end of the course, the student must be able to:

  • Create a computational photography application.

Assessment methods

The theoretical part will be evaluated with an oral exam at the end of the semester, and the practical part based on the students' group projects

Dans les plans d'études

  • Semestre: Printemps
  • Forme de l'examen: Pendant le semestre (session d'été)
  • Matière examinée: Computational photography
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Pendant le semestre (session d'été)
  • Matière examinée: Computational photography
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Pendant le semestre (session d'été)
  • Matière examinée: Computational photography
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Pendant le semestre (session d'été)
  • Matière examinée: Computational photography
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Pendant le semestre (session d'été)
  • Matière examinée: Computational photography
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Pendant le semestre (session d'été)
  • Matière examinée: Computational photography
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Pendant le semestre (session d'été)
  • Matière examinée: Computational photography
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Pendant le semestre (session d'été)
  • Matière examinée: Computational photography
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Pendant le semestre (session d'été)
  • Matière examinée: Computational photography
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Pendant le semestre (session d'été)
  • Matière examinée: Computational photography
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Pendant le semestre (session d'été)
  • Matière examinée: Computational photography
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Pendant le semestre (session d'été)
  • Matière examinée: Computational photography
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines

Semaine de référence

 LuMaMeJeVe
8-9     
9-10     
10-11     
11-12     
12-13     
13-14     
14-15     
15-16     
16-17     
17-18     
18-19     
19-20     
20-21     
21-22