CH-452 / 4 crédits

Enseignant: Bonella Sara

Langue: Anglais


Summary

This course will discuss the main methods for the simulation of quantum time dependent properties for molecular systems. Basic notions of density functional theory and of its time dependent version will be covered in the context of adiabatic and non adiabatic dynamics.

Content

Learning Prerequisites

Important concepts to start the course

Basic concepts of quantum mechanics

Basic knowledge of a programming language (one or more beteween C, Fortran, Matlab, Phyton)

Learning Outcomes

By the end of the course, the student must be able to:

  • Solve theoretical problems in quantum chemistry and physics
  • Decide which theoretical method is more appropriate to perform quantum molecular dynamics simulations
  • Prove the basic theorems of DFT and TDDFT
  • Interpret input and output of typical community codes for classical and ab initio molecular dynamics
  • Justify the selection of a computational scheme for the solution of a given problem on excited state dynamics
  • Derive different solutions for the combined electron-nuclear dynamics
  • Discuss the evolution of the different electronic structure methods for electronic excited states
  • Assess / Evaluate the range of application of different approximate methods for excited states quantum molecular dynamics
  • Implement simple exact or approximate quantum dynamical schemes in simple codes developed for the course

Transversal skills

  • Use a work methodology appropriate to the task.
  • Make an oral presentation.
  • Plan and carry out activities in a way which makes optimal use of available time and other resources.
  • Evaluate one's own performance in the team, receive and respond appropriately to feedback.

Teaching methods

Blackboard and coding excercises

Expected student activities

Solution of take home problem sets

Development (in team) of small research project, computational or based on literature

Oral presentation of research project

 

Assessment methods

1/4 Solution of take home exercises 

1/2 Development and presentation of research project

1/4 Oral exam on course topics

 

 

Supervision

Office hours Yes
Assistants Yes
Others Office hours to be determined by appointment via email

Resources

Bibliography


- D. J. Tannor, «Introduction to quantum mechanics. A time-dependent prospective», Univ. Science Books.
- D. Marx, J. Hutter, «Ab-inito molecular dynamics », Cambridge University Press

and lecture notes.

Ressources en bibliothèque

Notes/Handbook

Lecture notes and software material

Dans les plans d'études

  • Semestre: Automne
  • Forme de l'examen: Oral (session d'hiver)
  • Matière examinée: Computational methods in molecular quantum mechanics
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 1 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Oral (session d'hiver)
  • Matière examinée: Computational methods in molecular quantum mechanics
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 1 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Oral (session d'hiver)
  • Matière examinée: Computational methods in molecular quantum mechanics
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 1 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Oral (session d'hiver)
  • Matière examinée: Computational methods in molecular quantum mechanics
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 1 Heure(s) hebdo x 14 semaines

Semaine de référence

 LuMaMeJeVe
8-9     
9-10     
10-11     
11-12     
12-13     
13-14  BCH4310  
14-15    
15-16  BCH4310  
16-17     
17-18     
18-19     
19-20     
20-21     
21-22     

Mercredi, 13h - 15h: Cours BCH4310

Mercredi, 15h - 16h: Exercice, TP BCH4310