MATH-453 / 5 crédits

Enseignant: Kressner Daniel

Langue: Anglais


Summary

This course provides an overview of advanced techniques for solving large-scale linear algebra problems, as they typically arise in applications. A central goal of this course is to give the ability to choose a suitable solver for a given application.

Content

Keywords

linear systems, eigenvalue problems, matrix functions

Learning Prerequisites

Required courses

Linear Algebra, Numerical Analysis

Learning Outcomes

By the end of the course, the student must be able to:

  • Choose method for solving a specific problem.
  • Prove the convergence of iterative methods.
  • Interpret the results of a computation in the light of theory.
  • Implement numerical algorithms.
  • Describe methods for solving linear algebra problems.
  • State theoretical properties of numerical algorithms.

Teaching methods

Ex cathedra lecture, exercises in the classroom and with computer

Expected student activities

Attendance of lectures.

Completing exercises.

Completing a miniproject.

Solving problems on the computer.

Assessment methods

Miniproject and oral examination.

Dans le cas de l’art. 3 al. 5 du Règlement de section, l’enseignant décide de la forme de l’examen qu’il communique aux étudiants concernés.

Resources

Bibliography

Lecture notes will be provided by the instructor. Complimentary reading:

H. Elman, D. J. Silvester, and A. J. Wathen. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. Oxford University Press, 2005.

G. H. Golub and C. Van Loan. Matrix computations. Johns Hopkins University Press, 1996.

Y. Saad. Iterative methods for sparse linear systems. Second edition. SIAM, 2003.

 

Ressources en bibliothèque

Dans les plans d'études

  • Semestre: Printemps
  • Forme de l'examen: Oral (session d'été)
  • Matière examinée: Computational linear algebra
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Oral (session d'été)
  • Matière examinée: Computational linear algebra
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Oral (session d'été)
  • Matière examinée: Computational linear algebra
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Oral (session d'été)
  • Matière examinée: Computational linear algebra
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Oral (session d'été)
  • Matière examinée: Computational linear algebra
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Oral (session d'été)
  • Matière examinée: Computational linear algebra
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Oral (session d'été)
  • Matière examinée: Computational linear algebra
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Oral (session d'été)
  • Matière examinée: Computational linear algebra
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines

Semaine de référence

 LuMaMeJeVe
8-9     
9-10     
10-11     
11-12     
12-13     
13-14    MAA330
14-15  MAB1486 
15-16    
16-17     
17-18     
18-19     
19-20     
20-21     
21-22     

Mercredi, 14h - 16h: Exercice, TP MAB1486

Vendredi, 13h - 15h: Cours MAA330