EE-311 / 4 crédits

Enseignant: Liebling Michael Stefan Daniel

Langue: Français


Résumé

Ce cours présente une vue générale des techniques d'apprentissage automatique, passant en revue les algorithmes, le formalisme théorique et les protocoles expérimentaux.

Contenu

Mots-clés

apprentissage automatique, machine learning

Compétences requises

Cours prérequis obligatoires

  • Analyse (Calcul différentiel et intégral)
  • Algèbre linéaire
  • Probabilités et statistiques

Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:

  • Reconnaitre les différents types d'apprentissage machine
  • Reconnaitre le fonctionnement, le domaine d'application (conditions, limitations) de différents algorithmes d'apprentissage machine
  • Identifier les méthodes appropriées à des problèmes pratiques et formaliser leur expression
  • Implémenter des algorithmes d'apprentissage automatique
  • Reconnaitre les limitations éthiques et les implications légales liées à la collecte et l'utilisation de données à des fins d'apprentissage

Compétences transversales

  • Utiliser une méthodologie de travail appropriée, organiser un/son travail.
  • Faire preuve d'esprit critique
  • Etre conscient et respecter des directives légales pertinentes et du code éthique de la profession.

Méthode d'enseignement

  • Cours ex-cathedra
  • Séances d'exercices-labo encadrés (combinaison d'exercices théoriques et applications informatiques / programmation)

Travail attendu

  • Faire tous les exercices (théoriques, problèmes de programmation)
  • Participer activement au cours
  • Se préparer au cours (lecture du livre de référence, consultation des resources mises à disposition sur Moodle et en lien externe)

Méthode d'évaluation

  • Série d'exercices hebdomadaire notée (rendue sur Moodle) portant sur des dérivations théoriques, des implémentations informatiques, et de la connaissance du cours: 15%
  • Examen final: 85%

Encadrement

Assistants Oui
Forum électronique Oui

Ressources

Bibliographie

Titre:   Introduction au Machine Learning
Auteur:  Chloé-Agathe Azencott
Éditeur: Dunod, 2019
EAN: 9782100801534

Ressources en bibliothèque

Polycopiés

Chloé-Agathe Azencott "Introduction au Machine Learning," version électronique gratuite (sans exercices)

Dans les plans d'études

  • Semestre: Printemps
  • Forme de l'examen: Ecrit (session d'été)
  • Matière examinée: Apprentissage et intelligence artificielle
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • TP: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Ecrit (session d'été)
  • Matière examinée: Apprentissage et intelligence artificielle
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • TP: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Ecrit (session d'été)
  • Matière examinée: Apprentissage et intelligence artificielle
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • TP: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Ecrit (session d'été)
  • Matière examinée: Apprentissage et intelligence artificielle
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • TP: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Ecrit (session d'été)
  • Matière examinée: Apprentissage et intelligence artificielle
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • TP: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Ecrit (session d'été)
  • Matière examinée: Apprentissage et intelligence artificielle
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • TP: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Ecrit (session d'été)
  • Matière examinée: Apprentissage et intelligence artificielle
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • TP: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Printemps
  • Forme de l'examen: Ecrit (session d'été)
  • Matière examinée: Apprentissage et intelligence artificielle
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • TP: 2 Heure(s) hebdo x 14 semaines

Semaine de référence

 LuMaMeJeVe
8-9     
9-10     
10-11     
11-12     
12-13     
13-14     
14-15     
15-16     
16-17     
17-18     
18-19     
19-20     
20-21     
21-22