CS-401 / 6 crédits

Enseignant: West Robert

Langue: Anglais


Summary

This course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the data science world: pandas, scikit-learn, Spark, etc.

Content

Keywords

data science, data analysis, data mining, machine learning

 

Learning Prerequisites

Required courses

The student must have passed an introduction to databases course, OR a course in probability & statistics, OR two separate courses that include programming projects.

 

Recommended courses

  • CS-423 Distributed Information Systems
  • CS-433 Machine Learning

 

Important concepts to start the course

Algorithms, (object-oriented) programming, basic probability and statistics 

Learning Outcomes

By the end of the course, the student must be able to:

  • Construct a coherent understanding of the techniques and software tools required to perform the fundamental steps of the data science pipeline
  • Perform data acquisition (data formats, dataset fusion, Web scrapers, REST APIs, open data, big data platforms, etc.)
  • Perform data wrangling (fixing missing and incorrect data, data reconciliation, data quality assessments, etc.)
  • Perform data interpretation (statistics, correlation vs. causality, knowledge extraction, critical thinking, team discussions, ad-hoc visualizations, etc.)
  • Perform result dissemination (reporting, visualizations, publishing reproducible results, ethical concerns, etc.)

Transversal skills

  • Give feedback (critique) in an appropriate fashion.
  • Demonstrate the capacity for critical thinking
  • Write a scientific or technical report.
  • Evaluate one's own performance in the team, receive and respond appropriately to feedback.

Teaching methods

  • Physical in-class recitations and lab sessions
  • Homework assignments
  • In-class quizzes
  • Course project

 

Expected student activities

Students are expected to: 

  • Attend the lectures and lab sessions  
  • Complete 2-3 homework assignments
  • Complete 3 in-class quizzes (held during lab sessions)
  • Conduct the class project
  • Read/watch the pertinent material before a lecture 
  • Engage during the class, and present their results in front of the other colleagues 

 

Assessment methods

  • 30% continuous assessment during the semester (homework)
  • 30% final exam, data analysis task on a computer (3 hours)
  • 25% final project, done in groups of 4
  • 15% regular online quizzes

 

Supervision

Others

Dans les plans d'études

  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Applied data analysis
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Applied data analysis
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Applied data analysis
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Applied data analysis
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Applied data analysis
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Applied data analysis
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Applied data analysis
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Applied data analysis
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Applied data analysis
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Applied data analysis
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Applied data analysis
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Applied data analysis
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Applied data analysis
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Applied data analysis
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Applied data analysis
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Applied data analysis
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Applied data analysis
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Applied data analysis
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Applied data analysis
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Applied data analysis
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Applied data analysis
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Applied data analysis
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Applied data analysis
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Applied data analysis
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Applied data analysis
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Applied data analysis
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Applied data analysis
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Applied data analysis
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Projet: 2 Heure(s) hebdo x 14 semaines

Semaine de référence

 LuMaMeJeVe
8-9  RLCE1240  
9-10    
10-11     
11-12     
12-13     
13-14    BCH2201
14-15    
15-16     
16-17     
17-18     
18-19     
19-20     
20-21     
21-22     

Mercredi, 8h - 10h: Cours RLCE1240

Vendredi, 13h - 15h: Projet, autre BCH2201