MATH-101(a) / 6 crédits

Enseignant: Vela Arevalo Luz Vianey

Langue: Français


Résumé

Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.

Contenu

Mots-clés

nombres réels, fonction, suite numérique, suite convergente/divergente, limite d'une suite, sous-suite,

fonction, limite d'une fonction, fonction continue, série numérique, série convergente/divergente, convergence absolue, dérivée, classe C^k, théorème(s) des accroissements finis, développement limité, série entière, intégrale de Riemann, primitive, théorème de la valeur moyenne

Acquis de formation

  • Raisonner rigoureusement pour analyser des problèmes
  • Choisir ou sélectionner les outils d'analyse pertinents pour résoudre des problèmes
  • Identifier les concepts inhérents à chaque problème
  • Appliquer efficacement les concepts pour résoudre les exercices similaires aux exemples et exercices traités au cours
  • Se montrer capable d'analyser et de résoudre des problèmes nouveaux
  • Résoudre les problèmes de convergence, de suites et de séries
  • Maîtriser les techniques du calcul différentiel et intégral

Méthode d'enseignement

Cours ex cathedra et exercices en salle

Méthode d'évaluation

Examen écrit

Encadrement

Office hours Non
Assistants Oui
Forum électronique Oui
Autres

Ressources

Service de cours virtuels (VDI)

Oui

Bibliographie

Jacques Douchet and Bruno Zwahlen: Calcul différentiel et intégral. PPUR, 2011.

Ressources en bibliothèque

Polycopiés

Des slides à completer par les étudiant-e-s seront données.

Sites web

Vidéos

Préparation pour

Analyse II

Dans les plans d'études

  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Analyse I
  • Cours: 4 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Analyse I
  • Cours: 4 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines
  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Analyse I
  • Cours: 4 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines

Semaine de référence

 LuMaMeJeVe
8-9  CE6  
9-10    
10-11BCH2201 CO017
CO015
CO016
CO010
CO011
ELG120
  
11-12   
12-13     
13-14     
14-15     
15-16     
16-17     
17-18     
18-19     
19-20     
20-21     
21-22     

Mercredi, 8h - 10h: Cours CE6

Mercredi, 10h - 12h: Exercice, TP CO017
CO015
CO016
CO010
CO011
ELG120

Lundi, 10h - 12h: Cours BCH2201