Algebraic number theory
Summary
Algebraic number theory is the study of the properties of solutions of polynomial equations with integral coefficients; Starting with concrete problems, we then introduce more general notions like algebraic number fields, algebraic integers, units, ideal class groups...
Learning Prerequisites
Required courses
Rings and fields
Recommended courses
Galois Theory
Introduction à la théorie analytique des nombres
Rings and modules
Learning Outcomes
By the end of the course, the student must be able to:
- Synthesize the main concepts of algebraic number theory
- Solve problems related to algebraic number theory
Teaching methods
cours ex-cathedra et exercices
Expected student activities
De part sa nature, la théorie algébrique des nombres combine des techniques provenant de plusieurs domaines (algebre lineaire, algebre commutative, analyse, geometrie). Il est indispensable d'avoir une bonne maitrise de chacun d'eux. On attend une présence active aux séances de cours et surtout aux séances d'exercices. On demandera notamment aux étudiants de venir presenter leurs solutions au tableau.
Assessment methods
examen ecrit
Dans le cas de l'art. 3 al. 5 du Règlement de section, l'enseignant décide de la forme de l'examen qu'il communique aux étudiants concernés.
Supervision
Office hours | No |
Assistants | Yes |
Forum | No |
Others | moodle |
Resources
Bibliography
Samuel, algebraic number theory
Neukirch, Algebraic Number Theory
Ressources en bibliothèque
Prerequisite for
Topics in number theory.
Applications of number theory: eg. cryptography
Solving the Birch-Swinnerton-Dyer conjecture and win one of the Millenium Prizes (1M USD) from the Clay Mathematics Institute.
Receiving the Fields medal
Dans les plans d'études
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Algebraic number theory
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines