MATH-317 / 5 crédits

Enseignant: Michel Philippe

Langue: Anglais


Summary

Galois theory aims at describing the algebraic symmetries of fields. After reviewing the basic material (from the 2nd year course "Ring and Fields") and in particular the Galois correspondence, we will describe applications to classical problems as well as more advanced developments.

Content

Keywords

Field extension, Galois group

Learning Prerequisites

Required courses

MATH-211

MATH-215

 

Important concepts to start the course

Groups, Ring and Fields

Learning Outcomes

By the end of the course, the student must be able to:

  • Quote the results from the course
  • Apply the results from the course to other problems
  • Prove the main theorems of the course

Teaching methods

ex-cathedra

Expected student activities

Attendance to the course and active participation to the exercise sessions

Assessment methods

writen exam

Supervision

Assistants Yes
Forum No
Others moodle page

Resources

Bibliography

Chambert-Loir: A field guide to algebra

James Milne: Galois Theory

Ressources en bibliothèque

Références suggérées par la bibliothèque

Notes/Handbook

a pdf (in french) will be provided during the course

Moodle Link

Prerequisite for

MATH-328

MATH-417

MATH-429

MATH-482

MATH-489

MATH-494

MATH-535

 

 

Dans les plans d'études

  • Semestre: Automne
  • Forme de l'examen: Ecrit (session d'hiver)
  • Matière examinée: Algebra V - Galois theory
  • Cours: 2 Heure(s) hebdo x 14 semaines
  • Exercices: 2 Heure(s) hebdo x 14 semaines

Semaine de référence

 LuMaMeJeVe
8-9     
9-10     
10-11     
11-12     
12-13     
13-14     
14-15     
15-16     
16-17     
17-18     
18-19     
19-20     
20-21     
21-22     

Cours connexes

Résultats de graphsearch.epfl.ch.