Theoretical Microfluidics
MICRO-718 / 1 credit
Teacher(s): Gijs Martinus, Lehnert Thomas
Language: English
Remark: Course cancelled
Frequency
Every 2 years
Summary
Navier-Stokes equation and basic flow solutions / Hydraulic resistance and compliance Capillary effects / Diffusion and mixing on the microscale Electrohydrodynamics and Electroosmosis, Nanofluidics Dielectrophoresis and Magnetophoresis
Content
Liquid flows on the microscale often do not behave as we would expect intuitively from our macroscopic point of view. The goal of this course is to provide an insight into specific fluidic phenomena that appear on the scale of typical lab-on-a-chip devices. The course intends to give a more theoretical introduction of fundamental formulas and equations. Nevertheless a range of selected devices/applications will be shown to exemplify specific microfluidic properties. Using the Navier-Stokes equation we will first derive solutions for some basic microfluidic situations, with specific focus on pressure-driven flows. The impact of liquid/channel wall interfaces (capillary forces) on the solution transport in microchannels will be discussed. Analysing the convection-diffusion equation will allow to understand issues related to diffusion and mixing encountered in many lab-on-a-chip applications. In the last part of the course the physical background of liquid transport by electrical fields on the micro- and nanoscale will be explained in detail (electroosmosis). We will also derive the formulas governing the manipulation of cells or particles by electric (dielectrophoresis) and magnetic forces in microfluidic devices.
Keywords
Microfluidics, lab-on-a-chip, Navier-Stokes equation, electroosmosis
Learning Prerequisites
Important concepts to start the course
Basic knowledge in physics and lab-on-a-chip technologies/applications
Learning Outcomes
By the end of the course, the student must be able to:
Transversal skills
- Communicate effectively, being understood, including across different languages and cultures.
In the programs
- Number of places: 25
- Exam form: Oral (session free)
- Subject examined: Theoretical Microfluidics
- Lecture: 14 Hour(s)